123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- import torch
- import cv2
- import threading
- from datetime import datetime
- from ultralytics import YOLO
- from globals import stop_event,redis_client
- from config import SAVE_IMG_PATH,POST_IMG_PATH1,VIDEO_SOURCE,MODEL_PATH
- def init_compressed_oxygen_detection():
- pass
- def start_compressed_oxygen_detection(start_events):
-
- event = threading.Event()
- start_events.append(event)
- thread = threading.Thread(target=process_video, args=(MODEL_PATH,VIDEO_SOURCE,event))
- thread.daemon=True
- thread.start()
- thread.join()
- def process_video(model_path, video_source, start_event):
-
- model = YOLO(model_path)
- cap = cv2.VideoCapture(video_source)
- while cap.isOpened():
- # Read a frame from the video
- success, frame = cap.read()
- if stop_event.is_set():#控制停止推理
- break
- if success:
-
- if cap.get(cv2.CAP_PROP_POS_FRAMES) % 10 != 0:#跳帧检测,
- continue
- results = model.predict(frame,conf=0.6,verbose=False)
- for r in results:
- boxes = r.boxes.xyxy # 提取所有检测到的边界框坐标
- confidences = r.boxes.conf # 提取所有检测到的置信度
- classes = r.boxes.cls # 提取所有检测到的类别索引
-
- for i in range(len(boxes)):
- x1, y1, x2, y2 = boxes[i].tolist()
- confidence = confidences[i].item()
- cls = int(classes[i].item())
- label = model.names[cls]
- pass
-
-
- start_event.set()
- else:
- # Break the loop if the end of the video is reached
- break
- # Release the video capture object and close the display window
- cap.release()
-
- if torch.cuda.is_available():
- torch.cuda.empty_cache()
- del model
|