123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- import asyncio
- import aiohttp
- import time
- import io
- import cv2
- from logger import logger
- from stream import StreamCapture
- from infer import DoorInference
- from logger import logger
- from datetime import datetime
- def is_time_in_period(start_time_str, end_time_str):
- # 解析开始和结束时间字符串为time对象
- start_time = datetime.strptime(start_time_str, "%H:%M").time()
- end_time = datetime.strptime(end_time_str, "%H:%M").time()
- current_time = datetime.now().time()
-
- # 判断时间段是否跨天
- if start_time <= end_time:
- # 时间段在同一天
- return start_time <= current_time <= end_time
- else:
- # 时间段跨天(如22:00到次日02:00)
- return current_time >= start_time or current_time <= end_time
- async def upload_image(url, payload, filename1, content1, filename2, content2):
- form_data = aiohttp.FormData()
- # 添加普通表单数据
- for key, value in payload.items():
- form_data.add_field(key, value)
- # 添加文件数据
- form_data.add_field('file', content1, filename=filename1, content_type='image/jpeg')
- # form_data.add_field('oldFile', content2, filename=filename2, content_type='image/jpeg')
-
- # 发起 POST 请求
- async with aiohttp.ClientSession() as session:
- async with session.post(url, data=form_data) as response:
- result = await response.text()
- logger.info(result)
- async def process_stream():
- start_det_time = "10:00"
- end_det_time = "20:00"
- if not is_time_in_period(start_det_time, end_det_time):
- logger.info(f"当前时间不在时间段 {start_det_time} ~ {end_det_time}")
- return
- logger.info("====== Start Server =======")
- human_model_path = "models/yolo11m.pt"
- door_model_path = "models/door_classify.pt"
- test_area = [[(222, 59), (432, 3), (528, 96), (318, 198)]]
-
- instance = DoorInference(human_model_path, door_model_path, person_areas=None)
- ip = '172.19.152.231'
- channel = '45'
- stream = StreamCapture(ip, channel)
- # stream.get_stream_url()
-
- posttime = time.time() - 30
-
- frame = cv2.imread("inference/test.jpg")
- image = frame.copy()
-
- result = instance(image)
- if len(result) > 0 and time.time() - posttime >= 30:
- posttime = time.time()
- videoTime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime())
- fileTime = time.strftime('%Y-%m-%d-%H:%M:%S', time.localtime())
- filename = fileTime + ".jpg"
- filenameori = fileTime + "det.jpg"
- logger.info(videoTime)
- logger.info(result)
-
- for res in result:
- cv2.rectangle(image, tuple(map(int, (res.left, res.top))),
- tuple(map(int, (res.right, res.bottom))), (255, 0, 0), 4)
- cv2.imwrite("result.jpg", image)
- success, encoded_image = cv2.imencode('.jpg', image)
- if not success:
- logger.error('imencode image error')
- content = encoded_image.tobytes()
- successori, encoded_imageori = cv2.imencode('.jpg', frame)
- if not successori:
- logger.error('imencode original image error')
- contentori = encoded_imageori.tobytes()
-
- payload = {
- 'channel': '45',
- 'classIndex': '8',
- 'ip': '172.19.152.231',
- 'videoTime': videoTime,
- 'videoUrl': stream.stream_url
- }
-
- # 使用协程上传图像
- # await upload_image('http://172.19.152.231/open/api/operate/upload', payload, filename, content, filenameori, contentori)
- logger.info("======= EXIT =======")
- if __name__ == "__main__":
- asyncio.run(process_stream())
|