123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143 |
- import contextlib
- import math
- from pathlib import Path
- import cv2
- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
- import torch
- from .. import threaded
- from ..general import xywh2xyxy
- from ..plots import Annotator, colors
- @threaded
- def plot_images_and_masks(images, targets, masks, paths=None, fname='images.jpg', names=None):
- # Plot image grid with labels
- if isinstance(images, torch.Tensor):
- images = images.cpu().float().numpy()
- if isinstance(targets, torch.Tensor):
- targets = targets.cpu().numpy()
- if isinstance(masks, torch.Tensor):
- masks = masks.cpu().numpy().astype(int)
- max_size = 1920 # max image size
- max_subplots = 16 # max image subplots, i.e. 4x4
- bs, _, h, w = images.shape # batch size, _, height, width
- bs = min(bs, max_subplots) # limit plot images
- ns = np.ceil(bs ** 0.5) # number of subplots (square)
- if np.max(images[0]) <= 1:
- images *= 255 # de-normalise (optional)
- # Build Image
- mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
- for i, im in enumerate(images):
- if i == max_subplots: # if last batch has fewer images than we expect
- break
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- im = im.transpose(1, 2, 0)
- mosaic[y:y + h, x:x + w, :] = im
- # Resize (optional)
- scale = max_size / ns / max(h, w)
- if scale < 1:
- h = math.ceil(scale * h)
- w = math.ceil(scale * w)
- mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
- # Annotate
- fs = int((h + w) * ns * 0.01) # font size
- annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
- for i in range(i + 1):
- x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
- annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
- if paths:
- annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
- if len(targets) > 0:
- idx = targets[:, 0] == i
- ti = targets[idx] # image targets
- boxes = xywh2xyxy(ti[:, 2:6]).T
- classes = ti[:, 1].astype('int')
- labels = ti.shape[1] == 6 # labels if no conf column
- conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
- if boxes.shape[1]:
- if boxes.max() <= 1.01: # if normalized with tolerance 0.01
- boxes[[0, 2]] *= w # scale to pixels
- boxes[[1, 3]] *= h
- elif scale < 1: # absolute coords need scale if image scales
- boxes *= scale
- boxes[[0, 2]] += x
- boxes[[1, 3]] += y
- for j, box in enumerate(boxes.T.tolist()):
- cls = classes[j]
- color = colors(cls)
- cls = names[cls] if names else cls
- if labels or conf[j] > 0.25: # 0.25 conf thresh
- label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
- annotator.box_label(box, label, color=color)
- # Plot masks
- if len(masks):
- if masks.max() > 1.0: # mean that masks are overlap
- image_masks = masks[[i]] # (1, 640, 640)
- nl = len(ti)
- index = np.arange(nl).reshape(nl, 1, 1) + 1
- image_masks = np.repeat(image_masks, nl, axis=0)
- image_masks = np.where(image_masks == index, 1.0, 0.0)
- else:
- image_masks = masks[idx]
- im = np.asarray(annotator.im).copy()
- for j, box in enumerate(boxes.T.tolist()):
- if labels or conf[j] > 0.25: # 0.25 conf thresh
- color = colors(classes[j])
- mh, mw = image_masks[j].shape
- if mh != h or mw != w:
- mask = image_masks[j].astype(np.uint8)
- mask = cv2.resize(mask, (w, h))
- mask = mask.astype(bool)
- else:
- mask = image_masks[j].astype(bool)
- with contextlib.suppress(Exception):
- im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
- annotator.fromarray(im)
- annotator.im.save(fname) # save
- def plot_results_with_masks(file='path/to/results.csv', dir='', best=True):
- # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
- save_dir = Path(file).parent if file else Path(dir)
- fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
- ax = ax.ravel()
- files = list(save_dir.glob('results*.csv'))
- assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
- for f in files:
- try:
- data = pd.read_csv(f)
- index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
- 0.1 * data.values[:, 11])
- s = [x.strip() for x in data.columns]
- x = data.values[:, 0]
- for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
- y = data.values[:, j]
- # y[y == 0] = np.nan # don't show zero values
- ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=2)
- if best:
- # best
- ax[i].scatter(index, y[index], color='r', label=f'best:{index}', marker='*', linewidth=3)
- ax[i].set_title(s[j] + f'\n{round(y[index], 5)}')
- else:
- # last
- ax[i].scatter(x[-1], y[-1], color='r', label='last', marker='*', linewidth=3)
- ax[i].set_title(s[j] + f'\n{round(y[-1], 5)}')
- # if j in [8, 9, 10]: # share train and val loss y axes
- # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
- except Exception as e:
- print(f'Warning: Plotting error for {f}: {e}')
- ax[1].legend()
- fig.savefig(save_dir / 'results.png', dpi=200)
- plt.close()
|