loss.py 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from ..general import xywh2xyxy
  5. from ..loss import FocalLoss, smooth_BCE
  6. from ..metrics import bbox_iou
  7. from ..torch_utils import de_parallel
  8. from .general import crop_mask
  9. class ComputeLoss:
  10. # Compute losses
  11. def __init__(self, model, autobalance=False, overlap=False):
  12. self.sort_obj_iou = False
  13. self.overlap = overlap
  14. device = next(model.parameters()).device # get model device
  15. h = model.hyp # hyperparameters
  16. # Define criteria
  17. BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
  18. BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
  19. # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
  20. self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
  21. # Focal loss
  22. g = h['fl_gamma'] # focal loss gamma
  23. if g > 0:
  24. BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
  25. m = de_parallel(model).model[-1] # Detect() module
  26. self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
  27. self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
  28. self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
  29. self.na = m.na # number of anchors
  30. self.nc = m.nc # number of classes
  31. self.nl = m.nl # number of layers
  32. self.nm = m.nm # number of masks
  33. self.anchors = m.anchors
  34. self.device = device
  35. def __call__(self, preds, targets, masks): # predictions, targets, model
  36. p, proto = preds
  37. bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
  38. lcls = torch.zeros(1, device=self.device)
  39. lbox = torch.zeros(1, device=self.device)
  40. lobj = torch.zeros(1, device=self.device)
  41. lseg = torch.zeros(1, device=self.device)
  42. tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
  43. # Losses
  44. for i, pi in enumerate(p): # layer index, layer predictions
  45. b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
  46. tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
  47. n = b.shape[0] # number of targets
  48. if n:
  49. pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
  50. # Box regression
  51. pxy = pxy.sigmoid() * 2 - 0.5
  52. pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
  53. pbox = torch.cat((pxy, pwh), 1) # predicted box
  54. iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
  55. lbox += (1.0 - iou).mean() # iou loss
  56. # Objectness
  57. iou = iou.detach().clamp(0).type(tobj.dtype)
  58. if self.sort_obj_iou:
  59. j = iou.argsort()
  60. b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
  61. if self.gr < 1:
  62. iou = (1.0 - self.gr) + self.gr * iou
  63. tobj[b, a, gj, gi] = iou # iou ratio
  64. # Classification
  65. if self.nc > 1: # cls loss (only if multiple classes)
  66. t = torch.full_like(pcls, self.cn, device=self.device) # targets
  67. t[range(n), tcls[i]] = self.cp
  68. lcls += self.BCEcls(pcls, t) # BCE
  69. # Mask regression
  70. if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
  71. masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
  72. marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
  73. mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
  74. for bi in b.unique():
  75. j = b == bi # matching index
  76. if self.overlap:
  77. mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
  78. else:
  79. mask_gti = masks[tidxs[i]][j]
  80. lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
  81. obji = self.BCEobj(pi[..., 4], tobj)
  82. lobj += obji * self.balance[i] # obj loss
  83. if self.autobalance:
  84. self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
  85. if self.autobalance:
  86. self.balance = [x / self.balance[self.ssi] for x in self.balance]
  87. lbox *= self.hyp['box']
  88. lobj *= self.hyp['obj']
  89. lcls *= self.hyp['cls']
  90. lseg *= self.hyp['box'] / bs
  91. loss = lbox + lobj + lcls + lseg
  92. return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
  93. def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
  94. # Mask loss for one image
  95. pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
  96. loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
  97. return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
  98. def build_targets(self, p, targets):
  99. # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
  100. na, nt = self.na, targets.shape[0] # number of anchors, targets
  101. tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
  102. gain = torch.ones(8, device=self.device) # normalized to gridspace gain
  103. ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
  104. if self.overlap:
  105. batch = p[0].shape[0]
  106. ti = []
  107. for i in range(batch):
  108. num = (targets[:, 0] == i).sum() # find number of targets of each image
  109. ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
  110. ti = torch.cat(ti, 1) # (na, nt)
  111. else:
  112. ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
  113. targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
  114. g = 0.5 # bias
  115. off = torch.tensor(
  116. [
  117. [0, 0],
  118. [1, 0],
  119. [0, 1],
  120. [-1, 0],
  121. [0, -1], # j,k,l,m
  122. # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
  123. ],
  124. device=self.device).float() * g # offsets
  125. for i in range(self.nl):
  126. anchors, shape = self.anchors[i], p[i].shape
  127. gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
  128. # Match targets to anchors
  129. t = targets * gain # shape(3,n,7)
  130. if nt:
  131. # Matches
  132. r = t[..., 4:6] / anchors[:, None] # wh ratio
  133. j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
  134. # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
  135. t = t[j] # filter
  136. # Offsets
  137. gxy = t[:, 2:4] # grid xy
  138. gxi = gain[[2, 3]] - gxy # inverse
  139. j, k = ((gxy % 1 < g) & (gxy > 1)).T
  140. l, m = ((gxi % 1 < g) & (gxi > 1)).T
  141. j = torch.stack((torch.ones_like(j), j, k, l, m))
  142. t = t.repeat((5, 1, 1))[j]
  143. offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
  144. else:
  145. t = targets[0]
  146. offsets = 0
  147. # Define
  148. bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
  149. (a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
  150. gij = (gxy - offsets).long()
  151. gi, gj = gij.T # grid indices
  152. # Append
  153. indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
  154. tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
  155. anch.append(anchors[a]) # anchors
  156. tcls.append(c) # class
  157. tidxs.append(tidx)
  158. xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
  159. return tcls, tbox, indices, anch, tidxs, xywhn