123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- import cv2
- import numpy as np
- import torch
- import torch.nn.functional as F
- def crop_mask(masks, boxes):
- """
- "Crop" predicted masks by zeroing out everything not in the predicted bbox.
- Vectorized by Chong (thanks Chong).
- Args:
- - masks should be a size [n, h, w] tensor of masks
- - boxes should be a size [n, 4] tensor of bbox coords in relative point form
- """
- n, h, w = masks.shape
- x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
- r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
- c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
- return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
- def process_mask_upsample(protos, masks_in, bboxes, shape):
- """
- Crop after upsample.
- protos: [mask_dim, mask_h, mask_w]
- masks_in: [n, mask_dim], n is number of masks after nms
- bboxes: [n, 4], n is number of masks after nms
- shape: input_image_size, (h, w)
- return: h, w, n
- """
- c, mh, mw = protos.shape # CHW
- masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
- masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
- masks = crop_mask(masks, bboxes) # CHW
- return masks.gt_(0.5)
- def process_mask(protos, masks_in, bboxes, shape, upsample=False):
- """
- Crop before upsample.
- proto_out: [mask_dim, mask_h, mask_w]
- out_masks: [n, mask_dim], n is number of masks after nms
- bboxes: [n, 4], n is number of masks after nms
- shape:input_image_size, (h, w)
- return: h, w, n
- """
- c, mh, mw = protos.shape # CHW
- ih, iw = shape
- masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
- downsampled_bboxes = bboxes.clone()
- downsampled_bboxes[:, 0] *= mw / iw
- downsampled_bboxes[:, 2] *= mw / iw
- downsampled_bboxes[:, 3] *= mh / ih
- downsampled_bboxes[:, 1] *= mh / ih
- masks = crop_mask(masks, downsampled_bboxes) # CHW
- if upsample:
- masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
- return masks.gt_(0.5)
- def process_mask_native(protos, masks_in, bboxes, shape):
- """
- Crop after upsample.
- protos: [mask_dim, mask_h, mask_w]
- masks_in: [n, mask_dim], n is number of masks after nms
- bboxes: [n, 4], n is number of masks after nms
- shape: input_image_size, (h, w)
- return: h, w, n
- """
- c, mh, mw = protos.shape # CHW
- masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
- gain = min(mh / shape[0], mw / shape[1]) # gain = old / new
- pad = (mw - shape[1] * gain) / 2, (mh - shape[0] * gain) / 2 # wh padding
- top, left = int(pad[1]), int(pad[0]) # y, x
- bottom, right = int(mh - pad[1]), int(mw - pad[0])
- masks = masks[:, top:bottom, left:right]
- masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
- masks = crop_mask(masks, bboxes) # CHW
- return masks.gt_(0.5)
- def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
- """
- img1_shape: model input shape, [h, w]
- img0_shape: origin pic shape, [h, w, 3]
- masks: [h, w, num]
- """
- # Rescale coordinates (xyxy) from im1_shape to im0_shape
- if ratio_pad is None: # calculate from im0_shape
- gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
- pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
- else:
- pad = ratio_pad[1]
- top, left = int(pad[1]), int(pad[0]) # y, x
- bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
- if len(masks.shape) < 2:
- raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
- masks = masks[top:bottom, left:right]
- # masks = masks.permute(2, 0, 1).contiguous()
- # masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
- # masks = masks.permute(1, 2, 0).contiguous()
- masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
- if len(masks.shape) == 2:
- masks = masks[:, :, None]
- return masks
- def mask_iou(mask1, mask2, eps=1e-7):
- """
- mask1: [N, n] m1 means number of predicted objects
- mask2: [M, n] m2 means number of gt objects
- Note: n means image_w x image_h
- return: masks iou, [N, M]
- """
- intersection = torch.matmul(mask1, mask2.t()).clamp(0)
- union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
- return intersection / (union + eps)
- def masks_iou(mask1, mask2, eps=1e-7):
- """
- mask1: [N, n] m1 means number of predicted objects
- mask2: [N, n] m2 means number of gt objects
- Note: n means image_w x image_h
- return: masks iou, (N, )
- """
- intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
- union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
- return intersection / (union + eps)
- def masks2segments(masks, strategy='largest'):
- # Convert masks(n,160,160) into segments(n,xy)
- segments = []
- for x in masks.int().cpu().numpy().astype('uint8'):
- c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
- if c:
- if strategy == 'concat': # concatenate all segments
- c = np.concatenate([x.reshape(-1, 2) for x in c])
- elif strategy == 'largest': # select largest segment
- c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
- else:
- c = np.zeros((0, 2)) # no segments found
- segments.append(c.astype('float32'))
- return segments
|