Dockerfile 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
  2. # Builds ultralytics/yolov5:latest image on DockerHub https://hub.docker.com/r/ultralytics/yolov5
  3. # Image is CUDA-optimized for YOLOv5 single/multi-GPU training and inference
  4. # Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch
  5. FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
  6. # Downloads to user config dir
  7. ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
  8. # Install linux packages
  9. ENV DEBIAN_FRONTEND noninteractive
  10. RUN apt update
  11. RUN TZ=Etc/UTC apt install -y tzdata
  12. RUN apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg
  13. # RUN alias python=python3
  14. # Security updates
  15. # https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
  16. RUN apt upgrade --no-install-recommends -y openssl
  17. # Create working directory
  18. RUN rm -rf /usr/src/app && mkdir -p /usr/src/app
  19. WORKDIR /usr/src/app
  20. # Copy contents
  21. # COPY . /usr/src/app (issues as not a .git directory)
  22. RUN git clone https://github.com/ultralytics/yolov5 /usr/src/app
  23. # Install pip packages
  24. COPY requirements.txt .
  25. RUN python3 -m pip install --upgrade pip wheel
  26. RUN pip install --no-cache -r requirements.txt albumentations comet gsutil notebook \
  27. coremltools onnx onnx-simplifier onnxruntime 'openvino-dev>=2022.3'
  28. # tensorflow tensorflowjs \
  29. # Set environment variables
  30. ENV OMP_NUM_THREADS=1
  31. # Cleanup
  32. ENV DEBIAN_FRONTEND teletype
  33. # Usage Examples -------------------------------------------------------------------------------------------------------
  34. # Build and Push
  35. # t=ultralytics/yolov5:latest && sudo docker build -f utils/docker/Dockerfile -t $t . && sudo docker push $t
  36. # Pull and Run
  37. # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
  38. # Pull and Run with local directory access
  39. # t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
  40. # Kill all
  41. # sudo docker kill $(sudo docker ps -q)
  42. # Kill all image-based
  43. # sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
  44. # DockerHub tag update
  45. # t=ultralytics/yolov5:latest tnew=ultralytics/yolov5:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
  46. # Clean up
  47. # sudo docker system prune -a --volumes
  48. # Update Ubuntu drivers
  49. # https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
  50. # DDP test
  51. # python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
  52. # GCP VM from Image
  53. # docker.io/ultralytics/yolov5:latest