autobatch.py 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
  2. """
  3. Auto-batch utils
  4. """
  5. from copy import deepcopy
  6. import numpy as np
  7. import torch
  8. from utils.general import LOGGER, colorstr
  9. from utils.torch_utils import profile
  10. def check_train_batch_size(model, imgsz=640, amp=True):
  11. # Check YOLOv5 training batch size
  12. with torch.cuda.amp.autocast(amp):
  13. return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
  14. def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
  15. # Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
  16. # Usage:
  17. # import torch
  18. # from utils.autobatch import autobatch
  19. # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
  20. # print(autobatch(model))
  21. # Check device
  22. prefix = colorstr('AutoBatch: ')
  23. LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
  24. device = next(model.parameters()).device # get model device
  25. if device.type == 'cpu':
  26. LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
  27. return batch_size
  28. if torch.backends.cudnn.benchmark:
  29. LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
  30. return batch_size
  31. # Inspect CUDA memory
  32. gb = 1 << 30 # bytes to GiB (1024 ** 3)
  33. d = str(device).upper() # 'CUDA:0'
  34. properties = torch.cuda.get_device_properties(device) # device properties
  35. t = properties.total_memory / gb # GiB total
  36. r = torch.cuda.memory_reserved(device) / gb # GiB reserved
  37. a = torch.cuda.memory_allocated(device) / gb # GiB allocated
  38. f = t - (r + a) # GiB free
  39. LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
  40. # Profile batch sizes
  41. batch_sizes = [1, 2, 4, 8, 16]
  42. try:
  43. img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
  44. results = profile(img, model, n=3, device=device)
  45. except Exception as e:
  46. LOGGER.warning(f'{prefix}{e}')
  47. # Fit a solution
  48. y = [x[2] for x in results if x] # memory [2]
  49. p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
  50. b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
  51. if None in results: # some sizes failed
  52. i = results.index(None) # first fail index
  53. if b >= batch_sizes[i]: # y intercept above failure point
  54. b = batch_sizes[max(i - 1, 0)] # select prior safe point
  55. if b < 1 or b > 1024: # b outside of safe range
  56. b = batch_size
  57. LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
  58. fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
  59. LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
  60. return b