123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Validate a trained YOLOv5 segment model on a segment dataset
- Usage:
- $ bash data/scripts/get_coco.sh --val --segments # download COCO-segments val split (1G, 5000 images)
- $ python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640 # validate COCO-segments
- Usage - formats:
- $ python segment/val.py --weights yolov5s-seg.pt # PyTorch
- yolov5s-seg.torchscript # TorchScript
- yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s-seg_openvino_label # OpenVINO
- yolov5s-seg.engine # TensorRT
- yolov5s-seg.mlmodel # CoreML (macOS-only)
- yolov5s-seg_saved_model # TensorFlow SavedModel
- yolov5s-seg.pb # TensorFlow GraphDef
- yolov5s-seg.tflite # TensorFlow Lite
- yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
- yolov5s-seg_paddle_model # PaddlePaddle
- """
- import argparse
- import json
- import os
- import subprocess
- import sys
- from multiprocessing.pool import ThreadPool
- from pathlib import Path
- import numpy as np
- import torch
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- import torch.nn.functional as F
- from models.common import DetectMultiBackend
- from models.yolo import SegmentationModel
- from utils.callbacks import Callbacks
- from utils.general import (LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, Profile, check_dataset, check_img_size,
- check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path,
- non_max_suppression, print_args, scale_boxes, xywh2xyxy, xyxy2xywh)
- from utils.metrics import ConfusionMatrix, box_iou
- from utils.plots import output_to_target, plot_val_study
- from utils.segment.dataloaders import create_dataloader
- from utils.segment.general import mask_iou, process_mask, process_mask_native, scale_image
- from utils.segment.metrics import Metrics, ap_per_class_box_and_mask
- from utils.segment.plots import plot_images_and_masks
- from utils.torch_utils import de_parallel, select_device, smart_inference_mode
- def save_one_txt(predn, save_conf, shape, file):
- # Save one txt result
- gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
- for *xyxy, conf, cls in predn.tolist():
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(file, 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- def save_one_json(predn, jdict, path, class_map, pred_masks):
- # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
- from pycocotools.mask import encode
- def single_encode(x):
- rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
- rle['counts'] = rle['counts'].decode('utf-8')
- return rle
- image_id = int(path.stem) if path.stem.isnumeric() else path.stem
- box = xyxy2xywh(predn[:, :4]) # xywh
- box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
- pred_masks = np.transpose(pred_masks, (2, 0, 1))
- with ThreadPool(NUM_THREADS) as pool:
- rles = pool.map(single_encode, pred_masks)
- for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
- jdict.append({
- 'image_id': image_id,
- 'category_id': class_map[int(p[5])],
- 'bbox': [round(x, 3) for x in b],
- 'score': round(p[4], 5),
- 'segmentation': rles[i]})
- def process_batch(detections, labels, iouv, pred_masks=None, gt_masks=None, overlap=False, masks=False):
- """
- Return correct prediction matrix
- Arguments:
- detections (array[N, 6]), x1, y1, x2, y2, conf, class
- labels (array[M, 5]), class, x1, y1, x2, y2
- Returns:
- correct (array[N, 10]), for 10 IoU levels
- """
- if masks:
- if overlap:
- nl = len(labels)
- index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
- gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
- gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
- if gt_masks.shape[1:] != pred_masks.shape[1:]:
- gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
- gt_masks = gt_masks.gt_(0.5)
- iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
- else: # boxes
- iou = box_iou(labels[:, 1:], detections[:, :4])
- correct = np.zeros((detections.shape[0], iouv.shape[0])).astype(bool)
- correct_class = labels[:, 0:1] == detections[:, 5]
- for i in range(len(iouv)):
- x = torch.where((iou >= iouv[i]) & correct_class) # IoU > threshold and classes match
- if x[0].shape[0]:
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
- if x[0].shape[0] > 1:
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- # matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- correct[matches[:, 1].astype(int), i] = True
- return torch.tensor(correct, dtype=torch.bool, device=iouv.device)
- @smart_inference_mode()
- def run(
- data,
- weights=None, # model.pt path(s)
- batch_size=32, # batch size
- imgsz=640, # inference size (pixels)
- conf_thres=0.001, # confidence threshold
- iou_thres=0.6, # NMS IoU threshold
- max_det=300, # maximum detections per image
- task='val', # train, val, test, speed or study
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- workers=8, # max dataloader workers (per RANK in DDP mode)
- single_cls=False, # treat as single-class dataset
- augment=False, # augmented inference
- verbose=False, # verbose output
- save_txt=False, # save results to *.txt
- save_hybrid=False, # save label+prediction hybrid results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_json=False, # save a COCO-JSON results file
- project=ROOT / 'runs/val-seg', # save to project/name
- name='exp', # save to project/name
- exist_ok=False, # existing project/name ok, do not increment
- half=True, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- model=None,
- dataloader=None,
- save_dir=Path(''),
- plots=True,
- overlap=False,
- mask_downsample_ratio=1,
- compute_loss=None,
- callbacks=Callbacks(),
- ):
- if save_json:
- check_requirements('pycocotools>=2.0.6')
- process = process_mask_native # more accurate
- else:
- process = process_mask # faster
- # Initialize/load model and set device
- training = model is not None
- if training: # called by train.py
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
- half &= device.type != 'cpu' # half precision only supported on CUDA
- model.half() if half else model.float()
- nm = de_parallel(model).model[-1].nm # number of masks
- else: # called directly
- device = select_device(device, batch_size=batch_size)
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- # Load model
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_img_size(imgsz, s=stride) # check image size
- half = model.fp16 # FP16 supported on limited backends with CUDA
- nm = de_parallel(model).model.model[-1].nm if isinstance(model, SegmentationModel) else 32 # number of masks
- if engine:
- batch_size = model.batch_size
- else:
- device = model.device
- if not (pt or jit):
- batch_size = 1 # export.py models default to batch-size 1
- LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
- # Data
- data = check_dataset(data) # check
- # Configure
- model.eval()
- cuda = device.type != 'cpu'
- is_coco = isinstance(data.get('val'), str) and data['val'].endswith(f'coco{os.sep}val2017.txt') # COCO dataset
- nc = 1 if single_cls else int(data['nc']) # number of classes
- iouv = torch.linspace(0.5, 0.95, 10, device=device) # iou vector for mAP@0.5:0.95
- niou = iouv.numel()
- # Dataloader
- if not training:
- if pt and not single_cls: # check --weights are trained on --data
- ncm = model.model.nc
- assert ncm == nc, f'{weights} ({ncm} classes) trained on different --data than what you passed ({nc} ' \
- f'classes). Pass correct combination of --weights and --data that are trained together.'
- model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz)) # warmup
- pad, rect = (0.0, False) if task == 'speed' else (0.5, pt) # square inference for benchmarks
- task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
- dataloader = create_dataloader(data[task],
- imgsz,
- batch_size,
- stride,
- single_cls,
- pad=pad,
- rect=rect,
- workers=workers,
- prefix=colorstr(f'{task}: '),
- overlap_mask=overlap,
- mask_downsample_ratio=mask_downsample_ratio)[0]
- seen = 0
- confusion_matrix = ConfusionMatrix(nc=nc)
- names = model.names if hasattr(model, 'names') else model.module.names # get class names
- if isinstance(names, (list, tuple)): # old format
- names = dict(enumerate(names))
- class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
- s = ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P', 'R',
- 'mAP50', 'mAP50-95)')
- dt = Profile(), Profile(), Profile()
- metrics = Metrics()
- loss = torch.zeros(4, device=device)
- jdict, stats = [], []
- # callbacks.run('on_val_start')
- pbar = tqdm(dataloader, desc=s, bar_format=TQDM_BAR_FORMAT) # progress bar
- for batch_i, (im, targets, paths, shapes, masks) in enumerate(pbar):
- # callbacks.run('on_val_batch_start')
- with dt[0]:
- if cuda:
- im = im.to(device, non_blocking=True)
- targets = targets.to(device)
- masks = masks.to(device)
- masks = masks.float()
- im = im.half() if half else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- nb, _, height, width = im.shape # batch size, channels, height, width
- # Inference
- with dt[1]:
- preds, protos, train_out = model(im) if compute_loss else (*model(im, augment=augment)[:2], None)
- # Loss
- if compute_loss:
- loss += compute_loss((train_out, protos), targets, masks)[1] # box, obj, cls
- # NMS
- targets[:, 2:] *= torch.tensor((width, height, width, height), device=device) # to pixels
- lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
- with dt[2]:
- preds = non_max_suppression(preds,
- conf_thres,
- iou_thres,
- labels=lb,
- multi_label=True,
- agnostic=single_cls,
- max_det=max_det,
- nm=nm)
- # Metrics
- plot_masks = [] # masks for plotting
- for si, (pred, proto) in enumerate(zip(preds, protos)):
- labels = targets[targets[:, 0] == si, 1:]
- nl, npr = labels.shape[0], pred.shape[0] # number of labels, predictions
- path, shape = Path(paths[si]), shapes[si][0]
- correct_masks = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
- correct_bboxes = torch.zeros(npr, niou, dtype=torch.bool, device=device) # init
- seen += 1
- if npr == 0:
- if nl:
- stats.append((correct_masks, correct_bboxes, *torch.zeros((2, 0), device=device), labels[:, 0]))
- if plots:
- confusion_matrix.process_batch(detections=None, labels=labels[:, 0])
- continue
- # Masks
- midx = [si] if overlap else targets[:, 0] == si
- gt_masks = masks[midx]
- pred_masks = process(proto, pred[:, 6:], pred[:, :4], shape=im[si].shape[1:])
- # Predictions
- if single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- scale_boxes(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
- # Evaluate
- if nl:
- tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
- scale_boxes(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
- labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
- correct_bboxes = process_batch(predn, labelsn, iouv)
- correct_masks = process_batch(predn, labelsn, iouv, pred_masks, gt_masks, overlap=overlap, masks=True)
- if plots:
- confusion_matrix.process_batch(predn, labelsn)
- stats.append((correct_masks, correct_bboxes, pred[:, 4], pred[:, 5], labels[:, 0])) # (conf, pcls, tcls)
- pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
- if plots and batch_i < 3:
- plot_masks.append(pred_masks[:15]) # filter top 15 to plot
- # Save/log
- if save_txt:
- save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
- if save_json:
- pred_masks = scale_image(im[si].shape[1:],
- pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), shape, shapes[si][1])
- save_one_json(predn, jdict, path, class_map, pred_masks) # append to COCO-JSON dictionary
- # callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
- # Plot images
- if plots and batch_i < 3:
- if len(plot_masks):
- plot_masks = torch.cat(plot_masks, dim=0)
- plot_images_and_masks(im, targets, masks, paths, save_dir / f'val_batch{batch_i}_labels.jpg', names)
- plot_images_and_masks(im, output_to_target(preds, max_det=15), plot_masks, paths,
- save_dir / f'val_batch{batch_i}_pred.jpg', names) # pred
- # callbacks.run('on_val_batch_end')
- # Compute metrics
- stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*stats)] # to numpy
- if len(stats) and stats[0].any():
- results = ap_per_class_box_and_mask(*stats, plot=plots, save_dir=save_dir, names=names)
- metrics.update(results)
- nt = np.bincount(stats[4].astype(int), minlength=nc) # number of targets per class
- # Print results
- pf = '%22s' + '%11i' * 2 + '%11.3g' * 8 # print format
- LOGGER.info(pf % ('all', seen, nt.sum(), *metrics.mean_results()))
- if nt.sum() == 0:
- LOGGER.warning(f'WARNING ⚠️ no labels found in {task} set, can not compute metrics without labels')
- # Print results per class
- if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
- for i, c in enumerate(metrics.ap_class_index):
- LOGGER.info(pf % (names[c], seen, nt[c], *metrics.class_result(i)))
- # Print speeds
- t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
- if not training:
- shape = (batch_size, 3, imgsz, imgsz)
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
- # Plots
- if plots:
- confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
- # callbacks.run('on_val_end')
- mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask = metrics.mean_results()
- # Save JSON
- if save_json and len(jdict):
- w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
- anno_json = str(Path('../datasets/coco/annotations/instances_val2017.json')) # annotations
- pred_json = str(save_dir / f'{w}_predictions.json') # predictions
- LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
- with open(pred_json, 'w') as f:
- json.dump(jdict, f)
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- anno = COCO(anno_json) # init annotations api
- pred = anno.loadRes(pred_json) # init predictions api
- results = []
- for eval in COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm'):
- if is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.im_files] # img ID to evaluate
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- results.extend(eval.stats[:2]) # update results (mAP@0.5:0.95, mAP@0.5)
- map_bbox, map50_bbox, map_mask, map50_mask = results
- except Exception as e:
- LOGGER.info(f'pycocotools unable to run: {e}')
- # Return results
- model.float() # for training
- if not training:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- final_metric = mp_bbox, mr_bbox, map50_bbox, map_bbox, mp_mask, mr_mask, map50_mask, map_mask
- return (*final_metric, *(loss.cpu() / len(dataloader)).tolist()), metrics.get_maps(nc), t
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-seg.pt', help='model path(s)')
- parser.add_argument('--batch-size', type=int, default=32, help='batch size')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
- parser.add_argument('--max-det', type=int, default=300, help='maximum detections per image')
- parser.add_argument('--task', default='val', help='train, val, test, speed or study')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
- parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
- parser.add_argument('--augment', action='store_true', help='augmented inference')
- parser.add_argument('--verbose', action='store_true', help='report mAP by class')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
- parser.add_argument('--project', default=ROOT / 'runs/val-seg', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- opt = parser.parse_args()
- opt.data = check_yaml(opt.data) # check YAML
- # opt.save_json |= opt.data.endswith('coco.yaml')
- opt.save_txt |= opt.save_hybrid
- print_args(vars(opt))
- return opt
- def main(opt):
- check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
- if opt.task in ('train', 'val', 'test'): # run normally
- if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
- LOGGER.warning(f'WARNING ⚠️ confidence threshold {opt.conf_thres} > 0.001 produces invalid results')
- if opt.save_hybrid:
- LOGGER.warning('WARNING ⚠️ --save-hybrid returns high mAP from hybrid labels, not from predictions alone')
- run(**vars(opt))
- else:
- weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
- opt.half = torch.cuda.is_available() and opt.device != 'cpu' # FP16 for fastest results
- if opt.task == 'speed': # speed benchmarks
- # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
- opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
- for opt.weights in weights:
- run(**vars(opt), plots=False)
- elif opt.task == 'study': # speed vs mAP benchmarks
- # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
- for opt.weights in weights:
- f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
- x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
- for opt.imgsz in x: # img-size
- LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
- r, _, t = run(**vars(opt), plots=False)
- y.append(r + t) # results and times
- np.savetxt(f, y, fmt='%10.4g') # save
- subprocess.run(['zip', '-r', 'study.zip', 'study_*.txt'])
- plot_val_study(x=x) # plot
- else:
- raise NotImplementedError(f'--task {opt.task} not in ("train", "val", "test", "speed", "study")')
- if __name__ == '__main__':
- opt = parse_opt()
- main(opt)
|