123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Train a YOLOv5 segment model on a segment dataset
- Models and datasets download automatically from the latest YOLOv5 release.
- Usage - Single-GPU training:
- $ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended)
- $ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch
- Usage - Multi-GPU DDP training:
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3
- Models: https://github.com/ultralytics/yolov5/tree/master/models
- Datasets: https://github.com/ultralytics/yolov5/tree/master/data
- Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data
- """
- import argparse
- import math
- import os
- import random
- import subprocess
- import sys
- import time
- from copy import deepcopy
- from datetime import datetime
- from pathlib import Path
- import numpy as np
- import torch
- import torch.distributed as dist
- import torch.nn as nn
- import yaml
- from torch.optim import lr_scheduler
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- import segment.val as validate # for end-of-epoch mAP
- from models.experimental import attempt_load
- from models.yolo import SegmentationModel
- from utils.autoanchor import check_anchors
- from utils.autobatch import check_train_batch_size
- from utils.callbacks import Callbacks
- from utils.downloads import attempt_download, is_url
- from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
- check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
- get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
- labels_to_image_weights, one_cycle, print_args, print_mutation, strip_optimizer, yaml_save)
- from utils.loggers import GenericLogger
- from utils.plots import plot_evolve, plot_labels
- from utils.segment.dataloaders import create_dataloader
- from utils.segment.loss import ComputeLoss
- from utils.segment.metrics import KEYS, fitness
- from utils.segment.plots import plot_images_and_masks, plot_results_with_masks
- from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
- smart_resume, torch_distributed_zero_first)
- LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
- RANK = int(os.getenv('RANK', -1))
- WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
- GIT_INFO = check_git_info()
- def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary
- save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze, mask_ratio = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
- opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze, opt.mask_ratio
- # callbacks.run('on_pretrain_routine_start')
- # Directories
- w = save_dir / 'weights' # weights dir
- (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir
- last, best = w / 'last.pt', w / 'best.pt'
- # Hyperparameters
- if isinstance(hyp, str):
- with open(hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
- opt.hyp = hyp.copy() # for saving hyps to checkpoints
- # Save run settings
- if not evolve:
- yaml_save(save_dir / 'hyp.yaml', hyp)
- yaml_save(save_dir / 'opt.yaml', vars(opt))
- # Loggers
- data_dict = None
- if RANK in {-1, 0}:
- logger = GenericLogger(opt=opt, console_logger=LOGGER)
- # Config
- plots = not evolve and not opt.noplots # create plots
- overlap = not opt.no_overlap
- cuda = device.type != 'cpu'
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
- with torch_distributed_zero_first(LOCAL_RANK):
- data_dict = data_dict or check_dataset(data) # check if None
- train_path, val_path = data_dict['train'], data_dict['val']
- nc = 1 if single_cls else int(data_dict['nc']) # number of classes
- names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset
- # Model
- check_suffix(weights, '.pt') # check weights
- pretrained = weights.endswith('.pt')
- if pretrained:
- with torch_distributed_zero_first(LOCAL_RANK):
- weights = attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak
- model = SegmentationModel(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)
- exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys
- csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
- csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(csd, strict=False) # load
- LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report
- else:
- model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- amp = check_amp(model) # check AMP
- # Freeze
- freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results)
- if any(x in k for x in freeze):
- LOGGER.info(f'freezing {k}')
- v.requires_grad = False
- # Image size
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple
- # Batch size
- if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size
- batch_size = check_train_batch_size(model, imgsz, amp)
- logger.update_params({'batch_size': batch_size})
- # loggers.on_params_update({"batch_size": batch_size})
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing
- hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay
- optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])
- # Scheduler
- if opt.cos_lr:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- else:
- lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs)
- # EMA
- ema = ModelEMA(model) if RANK in {-1, 0} else None
- # Resume
- best_fitness, start_epoch = 0.0, 0
- if pretrained:
- if resume:
- best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
- del ckpt, csd
- # DP mode
- if cuda and RANK == -1 and torch.cuda.device_count() > 1:
- LOGGER.warning(
- 'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
- 'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
- )
- model = torch.nn.DataParallel(model)
- # SyncBatchNorm
- if opt.sync_bn and cuda and RANK != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- LOGGER.info('Using SyncBatchNorm()')
- # Trainloader
- train_loader, dataset = create_dataloader(
- train_path,
- imgsz,
- batch_size // WORLD_SIZE,
- gs,
- single_cls,
- hyp=hyp,
- augment=True,
- cache=None if opt.cache == 'val' else opt.cache,
- rect=opt.rect,
- rank=LOCAL_RANK,
- workers=workers,
- image_weights=opt.image_weights,
- quad=opt.quad,
- prefix=colorstr('train: '),
- shuffle=True,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- )
- labels = np.concatenate(dataset.labels, 0)
- mlc = int(labels[:, 0].max()) # max label class
- assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
- # Process 0
- if RANK in {-1, 0}:
- val_loader = create_dataloader(val_path,
- imgsz,
- batch_size // WORLD_SIZE * 2,
- gs,
- single_cls,
- hyp=hyp,
- cache=None if noval else opt.cache,
- rect=True,
- rank=-1,
- workers=workers * 2,
- pad=0.5,
- mask_downsample_ratio=mask_ratio,
- overlap_mask=overlap,
- prefix=colorstr('val: '))[0]
- if not resume:
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) # run AutoAnchor
- model.half().float() # pre-reduce anchor precision
- if plots:
- plot_labels(labels, names, save_dir)
- # callbacks.run('on_pretrain_routine_end', labels, names)
- # DDP mode
- if cuda and RANK != -1:
- model = smart_DDP(model)
- # Model attributes
- nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)
- hyp['box'] *= 3 / nl # scale to layers
- hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers
- hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
- # Start training
- t0 = time.time()
- nb = len(train_loader) # number of batches
- nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations, max(3 epochs, 100 iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- last_opt_step = -1
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = torch.cuda.amp.GradScaler(enabled=amp)
- stopper, stop = EarlyStopping(patience=opt.patience), False
- compute_loss = ComputeLoss(model, overlap=overlap) # init loss class
- # callbacks.run('on_train_start')
- LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
- f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
- f"Logging results to {colorstr('bold', save_dir)}\n"
- f'Starting training for {epochs} epochs...')
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- # callbacks.run('on_train_epoch_start')
- model.train()
- # Update image weights (optional, single-GPU only)
- if opt.image_weights:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Update mosaic border (optional)
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
- mloss = torch.zeros(4, device=device) # mean losses
- if RANK != -1:
- train_loader.sampler.set_epoch(epoch)
- pbar = enumerate(train_loader)
- LOGGER.info(('\n' + '%11s' * 8) %
- ('Epoch', 'GPU_mem', 'box_loss', 'seg_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
- if RANK in {-1, 0}:
- pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _, masks) in pbar: # batch ------------------------------------------------------
- # callbacks.run('on_train_batch_start')
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
- # Forward
- with torch.cuda.amp.autocast(amp):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float())
- if RANK != -1:
- loss *= WORLD_SIZE # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
- # Backward
- scaler.scale(loss).backward()
- # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
- if ni - last_opt_step >= accumulate:
- scaler.unscale_(optimizer) # unscale gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) # clip gradients
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
- last_opt_step = ni
- # Log
- if RANK in {-1, 0}:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB)
- pbar.set_description(('%11s' * 2 + '%11.4g' * 6) %
- (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
- # callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths)
- # if callbacks.stop_training:
- # return
- # Mosaic plots
- if plots:
- if ni < 3:
- plot_images_and_masks(imgs, targets, masks, paths, save_dir / f'train_batch{ni}.jpg')
- if ni == 10:
- files = sorted(save_dir.glob('train*.jpg'))
- logger.log_images(files, 'Mosaics', epoch)
- # end batch ------------------------------------------------------------------------------------------------
- # Scheduler
- lr = [x['lr'] for x in optimizer.param_groups] # for loggers
- scheduler.step()
- if RANK in {-1, 0}:
- # mAP
- # callbacks.run('on_train_epoch_end', epoch=epoch)
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
- final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
- if not noval or final_epoch: # Calculate mAP
- results, maps, _ = validate.run(data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- half=amp,
- model=ema.ema,
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- plots=False,
- callbacks=callbacks,
- compute_loss=compute_loss,
- mask_downsample_ratio=mask_ratio,
- overlap=overlap)
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- stop = stopper(epoch=epoch, fitness=fi) # early stop check
- if fi > best_fitness:
- best_fitness = fi
- log_vals = list(mloss) + list(results) + lr
- # callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
- # Log val metrics and media
- metrics_dict = dict(zip(KEYS, log_vals))
- logger.log_metrics(metrics_dict, epoch)
- # Save model
- if (not nosave) or (final_epoch and not evolve): # if save
- ckpt = {
- 'epoch': epoch,
- 'best_fitness': best_fitness,
- 'model': deepcopy(de_parallel(model)).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'opt': vars(opt),
- 'git': GIT_INFO, # {remote, branch, commit} if a git repo
- 'date': datetime.now().isoformat()}
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if opt.save_period > 0 and epoch % opt.save_period == 0:
- torch.save(ckpt, w / f'epoch{epoch}.pt')
- logger.log_model(w / f'epoch{epoch}.pt')
- del ckpt
- # callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
- # EarlyStopping
- if RANK != -1: # if DDP training
- broadcast_list = [stop if RANK == 0 else None]
- dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks
- if RANK != 0:
- stop = broadcast_list[0]
- if stop:
- break # must break all DDP ranks
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training -----------------------------------------------------------------------------------------------------
- if RANK in {-1, 0}:
- LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if f is best:
- LOGGER.info(f'\nValidating {f}...')
- results, _, _ = validate.run(
- data_dict,
- batch_size=batch_size // WORLD_SIZE * 2,
- imgsz=imgsz,
- model=attempt_load(f, device).half(),
- iou_thres=0.65 if is_coco else 0.60, # best pycocotools at iou 0.65
- single_cls=single_cls,
- dataloader=val_loader,
- save_dir=save_dir,
- save_json=is_coco,
- verbose=True,
- plots=plots,
- callbacks=callbacks,
- compute_loss=compute_loss,
- mask_downsample_ratio=mask_ratio,
- overlap=overlap) # val best model with plots
- if is_coco:
- # callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
- metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr))
- logger.log_metrics(metrics_dict, epoch)
- # callbacks.run('on_train_end', last, best, epoch, results)
- # on train end callback using genericLogger
- logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs)
- if not opt.evolve:
- logger.log_model(best, epoch)
- if plots:
- plot_results_with_masks(file=save_dir / 'results.csv') # save results.png
- files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
- files = [(save_dir / f) for f in files if (save_dir / f).exists()] # filter
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
- logger.log_images(files, 'Results', epoch + 1)
- logger.log_images(sorted(save_dir.glob('val*.jpg')), 'Validation', epoch + 1)
- torch.cuda.empty_cache()
- return results
- def parse_opt(known=False):
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s-seg.pt', help='initial weights path')
- parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
- parser.add_argument('--data', type=str, default=ROOT / 'data/coco128-seg.yaml', help='dataset.yaml path')
- parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
- parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
- parser.add_argument('--rect', action='store_true', help='rectangular training')
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- parser.add_argument('--noval', action='store_true', help='only validate final epoch')
- parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
- parser.add_argument('--noplots', action='store_true', help='save no plot files')
- parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
- parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
- parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
- parser.add_argument('--project', default=ROOT / 'runs/train-seg', help='save to project/name')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
- parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
- parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
- parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
- parser.add_argument('--seed', type=int, default=0, help='Global training seed')
- parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
- # Instance Segmentation Args
- parser.add_argument('--mask-ratio', type=int, default=4, help='Downsample the truth masks to saving memory')
- parser.add_argument('--no-overlap', action='store_true', help='Overlap masks train faster at slightly less mAP')
- return parser.parse_known_args()[0] if known else parser.parse_args()
- def main(opt, callbacks=Callbacks()):
- # Checks
- if RANK in {-1, 0}:
- print_args(vars(opt))
- check_git_status()
- check_requirements(ROOT / 'requirements.txt')
- # Resume
- if opt.resume and not opt.evolve: # resume from specified or most recent last.pt
- last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
- opt_yaml = last.parent.parent / 'opt.yaml' # train options yaml
- opt_data = opt.data # original dataset
- if opt_yaml.is_file():
- with open(opt_yaml, errors='ignore') as f:
- d = yaml.safe_load(f)
- else:
- d = torch.load(last, map_location='cpu')['opt']
- opt = argparse.Namespace(**d) # replace
- opt.cfg, opt.weights, opt.resume = '', str(last), True # reinstate
- if is_url(opt_data):
- opt.data = check_file(opt_data) # avoid HUB resume auth timeout
- else:
- opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
- check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- if opt.evolve:
- if opt.project == str(ROOT / 'runs/train-seg'): # if default project name, rename to runs/evolve-seg
- opt.project = str(ROOT / 'runs/evolve-seg')
- opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume
- if opt.name == 'cfg':
- opt.name = Path(opt.cfg).stem # use model.yaml as name
- opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
- # DDP mode
- device = select_device(opt.device, batch_size=opt.batch_size)
- if LOCAL_RANK != -1:
- msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
- assert not opt.image_weights, f'--image-weights {msg}'
- assert not opt.evolve, f'--evolve {msg}'
- assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
- assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
- assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
- torch.cuda.set_device(LOCAL_RANK)
- device = torch.device('cuda', LOCAL_RANK)
- dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')
- # Train
- if not opt.evolve:
- train(opt.hyp, opt, device, callbacks)
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- meta = {
- 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
- 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
- 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
- 'box': (1, 0.02, 0.2), # box loss gain
- 'cls': (1, 0.2, 4.0), # cls loss gain
- 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
- 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
- 'iou_t': (0, 0.1, 0.7), # IoU training threshold
- 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
- 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
- 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
- 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
- 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
- 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
- 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
- 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
- 'mixup': (1, 0.0, 1.0), # image mixup (probability)
- 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)
- with open(opt.hyp, errors='ignore') as f:
- hyp = yaml.safe_load(f) # load hyps dict
- if 'anchors' not in hyp: # anchors commented in hyp.yaml
- hyp['anchors'] = 3
- if opt.noautoanchor:
- del hyp['anchors'], meta['anchors']
- opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
- if opt.bucket:
- # download evolve.csv if exists
- subprocess.run([
- 'gsutil',
- 'cp',
- f'gs://{opt.bucket}/evolve.csv',
- str(evolve_csv), ])
- for _ in range(opt.evolve): # generations to evolve
- if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate
- # Select parent(s)
- parent = 'single' # parent selection method: 'single' or 'weighted'
- x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
- n = min(5, len(x)) # number of previous results to consider
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)
- if parent == 'single' or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # weighted selection
- elif parent == 'weighted':
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
- # Mutate
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1
- ng = len(meta)
- v = np.ones(ng)
- while all(v == 1): # mutate until a change occurs (prevent duplicates)
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 12] * v[i]) # mutate
- # Constrain to limits
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
- # Train mutation
- results = train(hyp.copy(), opt, device, callbacks)
- callbacks = Callbacks()
- # Write mutation results
- print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket)
- # Plot results
- plot_evolve(evolve_csv)
- LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
- f"Results saved to {colorstr('bold', save_dir)}\n"
- f'Usage example: $ python train.py --hyp {evolve_yaml}')
- def run(**kwargs):
- # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
- opt = parse_opt(True)
- for k, v in kwargs.items():
- setattr(opt, k, v)
- main(opt)
- return opt
- if __name__ == '__main__':
- opt = parse_opt()
- main(opt)
|