val.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
  2. """
  3. Validate a trained YOLOv5 classification model on a classification dataset
  4. Usage:
  5. $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
  6. $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
  7. Usage - formats:
  8. $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
  9. yolov5s-cls.torchscript # TorchScript
  10. yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
  11. yolov5s-cls_openvino_model # OpenVINO
  12. yolov5s-cls.engine # TensorRT
  13. yolov5s-cls.mlmodel # CoreML (macOS-only)
  14. yolov5s-cls_saved_model # TensorFlow SavedModel
  15. yolov5s-cls.pb # TensorFlow GraphDef
  16. yolov5s-cls.tflite # TensorFlow Lite
  17. yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
  18. yolov5s-cls_paddle_model # PaddlePaddle
  19. """
  20. import argparse
  21. import os
  22. import sys
  23. from pathlib import Path
  24. import torch
  25. from tqdm import tqdm
  26. FILE = Path(__file__).resolve()
  27. ROOT = FILE.parents[1] # YOLOv5 root directory
  28. if str(ROOT) not in sys.path:
  29. sys.path.append(str(ROOT)) # add ROOT to PATH
  30. ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
  31. from models.common import DetectMultiBackend
  32. from utils.dataloaders import create_classification_dataloader
  33. from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
  34. increment_path, print_args)
  35. from utils.torch_utils import select_device, smart_inference_mode
  36. @smart_inference_mode()
  37. def run(
  38. data=ROOT / '../datasets/mnist', # dataset dir
  39. weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
  40. batch_size=128, # batch size
  41. imgsz=224, # inference size (pixels)
  42. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  43. workers=8, # max dataloader workers (per RANK in DDP mode)
  44. verbose=False, # verbose output
  45. project=ROOT / 'runs/val-cls', # save to project/name
  46. name='exp', # save to project/name
  47. exist_ok=False, # existing project/name ok, do not increment
  48. half=False, # use FP16 half-precision inference
  49. dnn=False, # use OpenCV DNN for ONNX inference
  50. model=None,
  51. dataloader=None,
  52. criterion=None,
  53. pbar=None,
  54. ):
  55. # Initialize/load model and set device
  56. training = model is not None
  57. if training: # called by train.py
  58. device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
  59. half &= device.type != 'cpu' # half precision only supported on CUDA
  60. model.half() if half else model.float()
  61. else: # called directly
  62. device = select_device(device, batch_size=batch_size)
  63. # Directories
  64. save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
  65. save_dir.mkdir(parents=True, exist_ok=True) # make dir
  66. # Load model
  67. model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
  68. stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
  69. imgsz = check_img_size(imgsz, s=stride) # check image size
  70. half = model.fp16 # FP16 supported on limited backends with CUDA
  71. if engine:
  72. batch_size = model.batch_size
  73. else:
  74. device = model.device
  75. if not (pt or jit):
  76. batch_size = 1 # export.py models default to batch-size 1
  77. LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
  78. # Dataloader
  79. data = Path(data)
  80. test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
  81. dataloader = create_classification_dataloader(path=test_dir,
  82. imgsz=imgsz,
  83. batch_size=batch_size,
  84. augment=False,
  85. rank=-1,
  86. workers=workers)
  87. model.eval()
  88. pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
  89. n = len(dataloader) # number of batches
  90. action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
  91. desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}'
  92. bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
  93. with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
  94. for images, labels in bar:
  95. with dt[0]:
  96. images, labels = images.to(device, non_blocking=True), labels.to(device)
  97. with dt[1]:
  98. y = model(images)
  99. with dt[2]:
  100. pred.append(y.argsort(1, descending=True)[:, :5])
  101. targets.append(labels)
  102. if criterion:
  103. loss += criterion(y, labels)
  104. loss /= n
  105. pred, targets = torch.cat(pred), torch.cat(targets)
  106. correct = (targets[:, None] == pred).float()
  107. acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
  108. top1, top5 = acc.mean(0).tolist()
  109. if pbar:
  110. pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}'
  111. if verbose: # all classes
  112. LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
  113. LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
  114. for i, c in model.names.items():
  115. acc_i = acc[targets == i]
  116. top1i, top5i = acc_i.mean(0).tolist()
  117. LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}')
  118. # Print results
  119. t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
  120. shape = (1, 3, imgsz, imgsz)
  121. LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
  122. LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
  123. return top1, top5, loss
  124. def parse_opt():
  125. parser = argparse.ArgumentParser()
  126. parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
  127. parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
  128. parser.add_argument('--batch-size', type=int, default=128, help='batch size')
  129. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
  130. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  131. parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
  132. parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
  133. parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
  134. parser.add_argument('--name', default='exp', help='save to project/name')
  135. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  136. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  137. parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
  138. opt = parser.parse_args()
  139. print_args(vars(opt))
  140. return opt
  141. def main(opt):
  142. check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
  143. run(**vars(opt))
  144. if __name__ == '__main__':
  145. opt = parse_opt()
  146. main(opt)