123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- # WARNING ⚠️ wandb is deprecated and will be removed in future release.
- # See supported integrations at https://github.com/ultralytics/yolov5#integrations
- import logging
- import os
- import sys
- from contextlib import contextmanager
- from pathlib import Path
- from utils.general import LOGGER, colorstr
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[3] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- RANK = int(os.getenv('RANK', -1))
- DEPRECATION_WARNING = f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " \
- f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
- try:
- import wandb
- assert hasattr(wandb, '__version__') # verify package import not local dir
- LOGGER.warning(DEPRECATION_WARNING)
- except (ImportError, AssertionError):
- wandb = None
- class WandbLogger():
- """Log training runs, datasets, models, and predictions to Weights & Biases.
- This logger sends information to W&B at wandb.ai. By default, this information
- includes hyperparameters, system configuration and metrics, model metrics,
- and basic data metrics and analyses.
- By providing additional command line arguments to train.py, datasets,
- models and predictions can also be logged.
- For more on how this logger is used, see the Weights & Biases documentation:
- https://docs.wandb.com/guides/integrations/yolov5
- """
- def __init__(self, opt, run_id=None, job_type='Training'):
- """
- - Initialize WandbLogger instance
- - Upload dataset if opt.upload_dataset is True
- - Setup training processes if job_type is 'Training'
- arguments:
- opt (namespace) -- Commandline arguments for this run
- run_id (str) -- Run ID of W&B run to be resumed
- job_type (str) -- To set the job_type for this run
- """
- # Pre-training routine --
- self.job_type = job_type
- self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
- self.val_artifact, self.train_artifact = None, None
- self.train_artifact_path, self.val_artifact_path = None, None
- self.result_artifact = None
- self.val_table, self.result_table = None, None
- self.max_imgs_to_log = 16
- self.data_dict = None
- if self.wandb:
- self.wandb_run = wandb.init(config=opt,
- resume='allow',
- project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
- entity=opt.entity,
- name=opt.name if opt.name != 'exp' else None,
- job_type=job_type,
- id=run_id,
- allow_val_change=True) if not wandb.run else wandb.run
- if self.wandb_run:
- if self.job_type == 'Training':
- if isinstance(opt.data, dict):
- # This means another dataset manager has already processed the dataset info (e.g. ClearML)
- # and they will have stored the already processed dict in opt.data
- self.data_dict = opt.data
- self.setup_training(opt)
- def setup_training(self, opt):
- """
- Setup the necessary processes for training YOLO models:
- - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- - Setup log_dict, initialize bbox_interval
- arguments:
- opt (namespace) -- commandline arguments for this run
- """
- self.log_dict, self.current_epoch = {}, 0
- self.bbox_interval = opt.bbox_interval
- if isinstance(opt.resume, str):
- model_dir, _ = self.download_model_artifact(opt)
- if model_dir:
- self.weights = Path(model_dir) / 'last.pt'
- config = self.wandb_run.config
- opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
- self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
- config.hyp, config.imgsz
- if opt.bbox_interval == -1:
- self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
- if opt.evolve or opt.noplots:
- self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
- def log_model(self, path, opt, epoch, fitness_score, best_model=False):
- """
- Log the model checkpoint as W&B artifact
- arguments:
- path (Path) -- Path of directory containing the checkpoints
- opt (namespace) -- Command line arguments for this run
- epoch (int) -- Current epoch number
- fitness_score (float) -- fitness score for current epoch
- best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
- """
- model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
- type='model',
- metadata={
- 'original_url': str(path),
- 'epochs_trained': epoch + 1,
- 'save period': opt.save_period,
- 'project': opt.project,
- 'total_epochs': opt.epochs,
- 'fitness_score': fitness_score})
- model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
- wandb.log_artifact(model_artifact,
- aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
- LOGGER.info(f'Saving model artifact on epoch {epoch + 1}')
- def val_one_image(self, pred, predn, path, names, im):
- pass
- def log(self, log_dict):
- """
- save the metrics to the logging dictionary
- arguments:
- log_dict (Dict) -- metrics/media to be logged in current step
- """
- if self.wandb_run:
- for key, value in log_dict.items():
- self.log_dict[key] = value
- def end_epoch(self):
- """
- commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
- arguments:
- best_result (boolean): Boolean representing if the result of this evaluation is best or not
- """
- if self.wandb_run:
- with all_logging_disabled():
- try:
- wandb.log(self.log_dict)
- except BaseException as e:
- LOGGER.info(
- f'An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}'
- )
- self.wandb_run.finish()
- self.wandb_run = None
- self.log_dict = {}
- def finish_run(self):
- """
- Log metrics if any and finish the current W&B run
- """
- if self.wandb_run:
- if self.log_dict:
- with all_logging_disabled():
- wandb.log(self.log_dict)
- wandb.run.finish()
- LOGGER.warning(DEPRECATION_WARNING)
- @contextmanager
- def all_logging_disabled(highest_level=logging.CRITICAL):
- """ source - https://gist.github.com/simon-weber/7853144
- A context manager that will prevent any logging messages triggered during the body from being processed.
- :param highest_level: the maximum logging level in use.
- This would only need to be changed if a custom level greater than CRITICAL is defined.
- """
- previous_level = logging.root.manager.disable
- logging.disable(highest_level)
- try:
- yield
- finally:
- logging.disable(previous_level)
|