123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 |
- import glob
- import json
- import logging
- import os
- import sys
- from pathlib import Path
- logger = logging.getLogger(__name__)
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[3] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- try:
- import comet_ml
- # Project Configuration
- config = comet_ml.config.get_config()
- COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
- except ImportError:
- comet_ml = None
- COMET_PROJECT_NAME = None
- import PIL
- import torch
- import torchvision.transforms as T
- import yaml
- from utils.dataloaders import img2label_paths
- from utils.general import check_dataset, scale_boxes, xywh2xyxy
- from utils.metrics import box_iou
- COMET_PREFIX = 'comet://'
- COMET_MODE = os.getenv('COMET_MODE', 'online')
- # Model Saving Settings
- COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
- # Dataset Artifact Settings
- COMET_UPLOAD_DATASET = os.getenv('COMET_UPLOAD_DATASET', 'false').lower() == 'true'
- # Evaluation Settings
- COMET_LOG_CONFUSION_MATRIX = (os.getenv('COMET_LOG_CONFUSION_MATRIX', 'true').lower() == 'true')
- COMET_LOG_PREDICTIONS = os.getenv('COMET_LOG_PREDICTIONS', 'true').lower() == 'true'
- COMET_MAX_IMAGE_UPLOADS = int(os.getenv('COMET_MAX_IMAGE_UPLOADS', 100))
- # Confusion Matrix Settings
- CONF_THRES = float(os.getenv('CONF_THRES', 0.001))
- IOU_THRES = float(os.getenv('IOU_THRES', 0.6))
- # Batch Logging Settings
- COMET_LOG_BATCH_METRICS = (os.getenv('COMET_LOG_BATCH_METRICS', 'false').lower() == 'true')
- COMET_BATCH_LOGGING_INTERVAL = os.getenv('COMET_BATCH_LOGGING_INTERVAL', 1)
- COMET_PREDICTION_LOGGING_INTERVAL = os.getenv('COMET_PREDICTION_LOGGING_INTERVAL', 1)
- COMET_LOG_PER_CLASS_METRICS = (os.getenv('COMET_LOG_PER_CLASS_METRICS', 'false').lower() == 'true')
- RANK = int(os.getenv('RANK', -1))
- to_pil = T.ToPILImage()
- class CometLogger:
- """Log metrics, parameters, source code, models and much more
- with Comet
- """
- def __init__(self, opt, hyp, run_id=None, job_type='Training', **experiment_kwargs) -> None:
- self.job_type = job_type
- self.opt = opt
- self.hyp = hyp
- # Comet Flags
- self.comet_mode = COMET_MODE
- self.save_model = opt.save_period > -1
- self.model_name = COMET_MODEL_NAME
- # Batch Logging Settings
- self.log_batch_metrics = COMET_LOG_BATCH_METRICS
- self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
- # Dataset Artifact Settings
- self.upload_dataset = self.opt.upload_dataset or COMET_UPLOAD_DATASET
- self.resume = self.opt.resume
- # Default parameters to pass to Experiment objects
- self.default_experiment_kwargs = {
- 'log_code': False,
- 'log_env_gpu': True,
- 'log_env_cpu': True,
- 'project_name': COMET_PROJECT_NAME, }
- self.default_experiment_kwargs.update(experiment_kwargs)
- self.experiment = self._get_experiment(self.comet_mode, run_id)
- self.experiment.set_name(self.opt.name)
- self.data_dict = self.check_dataset(self.opt.data)
- self.class_names = self.data_dict['names']
- self.num_classes = self.data_dict['nc']
- self.logged_images_count = 0
- self.max_images = COMET_MAX_IMAGE_UPLOADS
- if run_id is None:
- self.experiment.log_other('Created from', 'YOLOv5')
- if not isinstance(self.experiment, comet_ml.OfflineExperiment):
- workspace, project_name, experiment_id = self.experiment.url.split('/')[-3:]
- self.experiment.log_other(
- 'Run Path',
- f'{workspace}/{project_name}/{experiment_id}',
- )
- self.log_parameters(vars(opt))
- self.log_parameters(self.opt.hyp)
- self.log_asset_data(
- self.opt.hyp,
- name='hyperparameters.json',
- metadata={'type': 'hyp-config-file'},
- )
- self.log_asset(
- f'{self.opt.save_dir}/opt.yaml',
- metadata={'type': 'opt-config-file'},
- )
- self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
- if hasattr(self.opt, 'conf_thres'):
- self.conf_thres = self.opt.conf_thres
- else:
- self.conf_thres = CONF_THRES
- if hasattr(self.opt, 'iou_thres'):
- self.iou_thres = self.opt.iou_thres
- else:
- self.iou_thres = IOU_THRES
- self.log_parameters({'val_iou_threshold': self.iou_thres, 'val_conf_threshold': self.conf_thres})
- self.comet_log_predictions = COMET_LOG_PREDICTIONS
- if self.opt.bbox_interval == -1:
- self.comet_log_prediction_interval = (1 if self.opt.epochs < 10 else self.opt.epochs // 10)
- else:
- self.comet_log_prediction_interval = self.opt.bbox_interval
- if self.comet_log_predictions:
- self.metadata_dict = {}
- self.logged_image_names = []
- self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
- self.experiment.log_others({
- 'comet_mode': COMET_MODE,
- 'comet_max_image_uploads': COMET_MAX_IMAGE_UPLOADS,
- 'comet_log_per_class_metrics': COMET_LOG_PER_CLASS_METRICS,
- 'comet_log_batch_metrics': COMET_LOG_BATCH_METRICS,
- 'comet_log_confusion_matrix': COMET_LOG_CONFUSION_MATRIX,
- 'comet_model_name': COMET_MODEL_NAME, })
- # Check if running the Experiment with the Comet Optimizer
- if hasattr(self.opt, 'comet_optimizer_id'):
- self.experiment.log_other('optimizer_id', self.opt.comet_optimizer_id)
- self.experiment.log_other('optimizer_objective', self.opt.comet_optimizer_objective)
- self.experiment.log_other('optimizer_metric', self.opt.comet_optimizer_metric)
- self.experiment.log_other('optimizer_parameters', json.dumps(self.hyp))
- def _get_experiment(self, mode, experiment_id=None):
- if mode == 'offline':
- if experiment_id is not None:
- return comet_ml.ExistingOfflineExperiment(
- previous_experiment=experiment_id,
- **self.default_experiment_kwargs,
- )
- return comet_ml.OfflineExperiment(**self.default_experiment_kwargs, )
- else:
- try:
- if experiment_id is not None:
- return comet_ml.ExistingExperiment(
- previous_experiment=experiment_id,
- **self.default_experiment_kwargs,
- )
- return comet_ml.Experiment(**self.default_experiment_kwargs)
- except ValueError:
- logger.warning('COMET WARNING: '
- 'Comet credentials have not been set. '
- 'Comet will default to offline logging. '
- 'Please set your credentials to enable online logging.')
- return self._get_experiment('offline', experiment_id)
- return
- def log_metrics(self, log_dict, **kwargs):
- self.experiment.log_metrics(log_dict, **kwargs)
- def log_parameters(self, log_dict, **kwargs):
- self.experiment.log_parameters(log_dict, **kwargs)
- def log_asset(self, asset_path, **kwargs):
- self.experiment.log_asset(asset_path, **kwargs)
- def log_asset_data(self, asset, **kwargs):
- self.experiment.log_asset_data(asset, **kwargs)
- def log_image(self, img, **kwargs):
- self.experiment.log_image(img, **kwargs)
- def log_model(self, path, opt, epoch, fitness_score, best_model=False):
- if not self.save_model:
- return
- model_metadata = {
- 'fitness_score': fitness_score[-1],
- 'epochs_trained': epoch + 1,
- 'save_period': opt.save_period,
- 'total_epochs': opt.epochs, }
- model_files = glob.glob(f'{path}/*.pt')
- for model_path in model_files:
- name = Path(model_path).name
- self.experiment.log_model(
- self.model_name,
- file_or_folder=model_path,
- file_name=name,
- metadata=model_metadata,
- overwrite=True,
- )
- def check_dataset(self, data_file):
- with open(data_file) as f:
- data_config = yaml.safe_load(f)
- path = data_config.get('path')
- if path and path.startswith(COMET_PREFIX):
- path = data_config['path'].replace(COMET_PREFIX, '')
- data_dict = self.download_dataset_artifact(path)
- return data_dict
- self.log_asset(self.opt.data, metadata={'type': 'data-config-file'})
- return check_dataset(data_file)
- def log_predictions(self, image, labelsn, path, shape, predn):
- if self.logged_images_count >= self.max_images:
- return
- detections = predn[predn[:, 4] > self.conf_thres]
- iou = box_iou(labelsn[:, 1:], detections[:, :4])
- mask, _ = torch.where(iou > self.iou_thres)
- if len(mask) == 0:
- return
- filtered_detections = detections[mask]
- filtered_labels = labelsn[mask]
- image_id = path.split('/')[-1].split('.')[0]
- image_name = f'{image_id}_curr_epoch_{self.experiment.curr_epoch}'
- if image_name not in self.logged_image_names:
- native_scale_image = PIL.Image.open(path)
- self.log_image(native_scale_image, name=image_name)
- self.logged_image_names.append(image_name)
- metadata = []
- for cls, *xyxy in filtered_labels.tolist():
- metadata.append({
- 'label': f'{self.class_names[int(cls)]}-gt',
- 'score': 100,
- 'box': {
- 'x': xyxy[0],
- 'y': xyxy[1],
- 'x2': xyxy[2],
- 'y2': xyxy[3]}, })
- for *xyxy, conf, cls in filtered_detections.tolist():
- metadata.append({
- 'label': f'{self.class_names[int(cls)]}',
- 'score': conf * 100,
- 'box': {
- 'x': xyxy[0],
- 'y': xyxy[1],
- 'x2': xyxy[2],
- 'y2': xyxy[3]}, })
- self.metadata_dict[image_name] = metadata
- self.logged_images_count += 1
- return
- def preprocess_prediction(self, image, labels, shape, pred):
- nl, _ = labels.shape[0], pred.shape[0]
- # Predictions
- if self.opt.single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
- labelsn = None
- if nl:
- tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
- scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
- labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
- scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
- return predn, labelsn
- def add_assets_to_artifact(self, artifact, path, asset_path, split):
- img_paths = sorted(glob.glob(f'{asset_path}/*'))
- label_paths = img2label_paths(img_paths)
- for image_file, label_file in zip(img_paths, label_paths):
- image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
- try:
- artifact.add(
- image_file,
- logical_path=image_logical_path,
- metadata={'split': split},
- )
- artifact.add(
- label_file,
- logical_path=label_logical_path,
- metadata={'split': split},
- )
- except ValueError as e:
- logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
- logger.error(f'COMET ERROR: {e}')
- continue
- return artifact
- def upload_dataset_artifact(self):
- dataset_name = self.data_dict.get('dataset_name', 'yolov5-dataset')
- path = str((ROOT / Path(self.data_dict['path'])).resolve())
- metadata = self.data_dict.copy()
- for key in ['train', 'val', 'test']:
- split_path = metadata.get(key)
- if split_path is not None:
- metadata[key] = split_path.replace(path, '')
- artifact = comet_ml.Artifact(name=dataset_name, artifact_type='dataset', metadata=metadata)
- for key in metadata.keys():
- if key in ['train', 'val', 'test']:
- if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
- continue
- asset_path = self.data_dict.get(key)
- if asset_path is not None:
- artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
- self.experiment.log_artifact(artifact)
- return
- def download_dataset_artifact(self, artifact_path):
- logged_artifact = self.experiment.get_artifact(artifact_path)
- artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
- logged_artifact.download(artifact_save_dir)
- metadata = logged_artifact.metadata
- data_dict = metadata.copy()
- data_dict['path'] = artifact_save_dir
- metadata_names = metadata.get('names')
- if type(metadata_names) == dict:
- data_dict['names'] = {int(k): v for k, v in metadata.get('names').items()}
- elif type(metadata_names) == list:
- data_dict['names'] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
- else:
- raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
- data_dict = self.update_data_paths(data_dict)
- return data_dict
- def update_data_paths(self, data_dict):
- path = data_dict.get('path', '')
- for split in ['train', 'val', 'test']:
- if data_dict.get(split):
- split_path = data_dict.get(split)
- data_dict[split] = (f'{path}/{split_path}' if isinstance(split, str) else [
- f'{path}/{x}' for x in split_path])
- return data_dict
- def on_pretrain_routine_end(self, paths):
- if self.opt.resume:
- return
- for path in paths:
- self.log_asset(str(path))
- if self.upload_dataset:
- if not self.resume:
- self.upload_dataset_artifact()
- return
- def on_train_start(self):
- self.log_parameters(self.hyp)
- def on_train_epoch_start(self):
- return
- def on_train_epoch_end(self, epoch):
- self.experiment.curr_epoch = epoch
- return
- def on_train_batch_start(self):
- return
- def on_train_batch_end(self, log_dict, step):
- self.experiment.curr_step = step
- if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
- self.log_metrics(log_dict, step=step)
- return
- def on_train_end(self, files, save_dir, last, best, epoch, results):
- if self.comet_log_predictions:
- curr_epoch = self.experiment.curr_epoch
- self.experiment.log_asset_data(self.metadata_dict, 'image-metadata.json', epoch=curr_epoch)
- for f in files:
- self.log_asset(f, metadata={'epoch': epoch})
- self.log_asset(f'{save_dir}/results.csv', metadata={'epoch': epoch})
- if not self.opt.evolve:
- model_path = str(best if best.exists() else last)
- name = Path(model_path).name
- if self.save_model:
- self.experiment.log_model(
- self.model_name,
- file_or_folder=model_path,
- file_name=name,
- overwrite=True,
- )
- # Check if running Experiment with Comet Optimizer
- if hasattr(self.opt, 'comet_optimizer_id'):
- metric = results.get(self.opt.comet_optimizer_metric)
- self.experiment.log_other('optimizer_metric_value', metric)
- self.finish_run()
- def on_val_start(self):
- return
- def on_val_batch_start(self):
- return
- def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
- if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
- return
- for si, pred in enumerate(outputs):
- if len(pred) == 0:
- continue
- image = images[si]
- labels = targets[targets[:, 0] == si, 1:]
- shape = shapes[si]
- path = paths[si]
- predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
- if labelsn is not None:
- self.log_predictions(image, labelsn, path, shape, predn)
- return
- def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
- if self.comet_log_per_class_metrics:
- if self.num_classes > 1:
- for i, c in enumerate(ap_class):
- class_name = self.class_names[c]
- self.experiment.log_metrics(
- {
- 'mAP@.5': ap50[i],
- 'mAP@.5:.95': ap[i],
- 'precision': p[i],
- 'recall': r[i],
- 'f1': f1[i],
- 'true_positives': tp[i],
- 'false_positives': fp[i],
- 'support': nt[c], },
- prefix=class_name,
- )
- if self.comet_log_confusion_matrix:
- epoch = self.experiment.curr_epoch
- class_names = list(self.class_names.values())
- class_names.append('background')
- num_classes = len(class_names)
- self.experiment.log_confusion_matrix(
- matrix=confusion_matrix.matrix,
- max_categories=num_classes,
- labels=class_names,
- epoch=epoch,
- column_label='Actual Category',
- row_label='Predicted Category',
- file_name=f'confusion-matrix-epoch-{epoch}.json',
- )
- def on_fit_epoch_end(self, result, epoch):
- self.log_metrics(result, epoch=epoch)
- def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
- if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
- self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
- def on_params_update(self, params):
- self.log_parameters(params)
- def finish_run(self):
- self.experiment.end()
|