123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391 |
- """
- YOLO-specific modules
- Usage:
- $ python models/yolo.py --cfg yolov5s.yaml
- """
- import argparse
- import contextlib
- import os
- import platform
- import sys
- from copy import deepcopy
- from pathlib import Path
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1]
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT))
- if platform.system() != 'Windows':
- ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
- from models.common import *
- from models.experimental import *
- from utils.autoanchor import check_anchor_order
- from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
- from utils.plots import feature_visualization
- from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
- time_sync)
- try:
- import thop
- except ImportError:
- thop = None
- class Detect(nn.Module):
-
- stride = None
- dynamic = False
- export = False
- def __init__(self, nc=80, anchors=(), ch=(), inplace=True):
- super().__init__()
- self.nc = nc
- self.no = nc + 5
- self.nl = len(anchors)
- self.na = len(anchors[0]) // 2
- self.grid = [torch.empty(0) for _ in range(self.nl)]
- self.anchor_grid = [torch.empty(0) for _ in range(self.nl)]
- self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)
- self.inplace = inplace
- def forward(self, x):
- z = []
- for i in range(self.nl):
- x[i] = self.m[i](x[i])
- bs, _, ny, nx = x[i].shape
- x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
- if not self.training:
- if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
- self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
- if isinstance(self, Segment):
- xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)
- xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i]
- wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i]
- y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)
- else:
- xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)
- xy = (xy * 2 + self.grid[i]) * self.stride[i]
- wh = (wh * 2) ** 2 * self.anchor_grid[i]
- y = torch.cat((xy, wh, conf), 4)
- z.append(y.view(bs, self.na * nx * ny, self.no))
- return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)
- def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
- d = self.anchors[i].device
- t = self.anchors[i].dtype
- shape = 1, self.na, ny, nx, 2
- y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
- yv, xv = torch.meshgrid(y, x, indexing='ij') if torch_1_10 else torch.meshgrid(y, x)
- grid = torch.stack((xv, yv), 2).expand(shape) - 0.5
- anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape)
- return grid, anchor_grid
- class Segment(Detect):
-
- def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), inplace=True):
- super().__init__(nc, anchors, ch, inplace)
- self.nm = nm
- self.npr = npr
- self.no = 5 + nc + self.nm
- self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)
- self.proto = Proto(ch[0], self.npr, self.nm)
- self.detect = Detect.forward
- def forward(self, x):
- p = self.proto(x[0])
- x = self.detect(self, x)
- return (x, p) if self.training else (x[0], p) if self.export else (x[0], p, x[1])
- class BaseModel(nn.Module):
-
- def forward(self, x, profile=False, visualize=False):
- return self._forward_once(x, profile, visualize)
- def _forward_once(self, x, profile=False, visualize=False):
- y, dt = [], []
- for m in self.model:
- if m.f != -1:
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
- if profile:
- self._profile_one_layer(m, x, dt)
- x = m(x)
- y.append(x if m.i in self.save else None)
- if visualize:
- feature_visualization(x, m.type, m.i, save_dir=visualize)
- return x
- def _profile_one_layer(self, m, x, dt):
- c = m == self.model[-1]
- o = thop.profile(m, inputs=(x.copy() if c else x, ), verbose=False)[0] / 1E9 * 2 if thop else 0
- t = time_sync()
- for _ in range(10):
- m(x.copy() if c else x)
- dt.append((time_sync() - t) * 100)
- if m == self.model[0]:
- LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
- LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
- if c:
- LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
- def fuse(self):
- LOGGER.info('Fusing layers... ')
- for m in self.model.modules():
- if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
- m.conv = fuse_conv_and_bn(m.conv, m.bn)
- delattr(m, 'bn')
- m.forward = m.forward_fuse
- self.info()
- return self
- def info(self, verbose=False, img_size=640):
- model_info(self, verbose, img_size)
- def _apply(self, fn):
-
- self = super()._apply(fn)
- m = self.model[-1]
- if isinstance(m, (Detect, Segment)):
- m.stride = fn(m.stride)
- m.grid = list(map(fn, m.grid))
- if isinstance(m.anchor_grid, list):
- m.anchor_grid = list(map(fn, m.anchor_grid))
- return self
- class DetectionModel(BaseModel):
-
- def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):
- super().__init__()
- if isinstance(cfg, dict):
- self.yaml = cfg
- else:
- import yaml
- self.yaml_file = Path(cfg).name
- with open(cfg, encoding='ascii', errors='ignore') as f:
- self.yaml = yaml.safe_load(f)
-
- ch = self.yaml['ch'] = self.yaml.get('ch', ch)
- if nc and nc != self.yaml['nc']:
- LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
- self.yaml['nc'] = nc
- if anchors:
- LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
- self.yaml['anchors'] = round(anchors)
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])
- self.names = [str(i) for i in range(self.yaml['nc'])]
- self.inplace = self.yaml.get('inplace', True)
-
- m = self.model[-1]
- if isinstance(m, (Detect, Segment)):
- s = 256
- m.inplace = self.inplace
- forward = lambda x: self.forward(x)[0] if isinstance(m, Segment) else self.forward(x)
- m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])
- check_anchor_order(m)
- m.anchors /= m.stride.view(-1, 1, 1)
- self.stride = m.stride
- self._initialize_biases()
-
- initialize_weights(self)
- self.info()
- LOGGER.info('')
- def forward(self, x, augment=False, profile=False, visualize=False):
- if augment:
- return self._forward_augment(x)
- return self._forward_once(x, profile, visualize)
- def _forward_augment(self, x):
- img_size = x.shape[-2:]
- s = [1, 0.83, 0.67]
- f = [None, 3, None]
- y = []
- for si, fi in zip(s, f):
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
- yi = self._forward_once(xi)[0]
-
- yi = self._descale_pred(yi, fi, si, img_size)
- y.append(yi)
- y = self._clip_augmented(y)
- return torch.cat(y, 1), None
- def _descale_pred(self, p, flips, scale, img_size):
-
- if self.inplace:
- p[..., :4] /= scale
- if flips == 2:
- p[..., 1] = img_size[0] - p[..., 1]
- elif flips == 3:
- p[..., 0] = img_size[1] - p[..., 0]
- else:
- x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale
- if flips == 2:
- y = img_size[0] - y
- elif flips == 3:
- x = img_size[1] - x
- p = torch.cat((x, y, wh, p[..., 4:]), -1)
- return p
- def _clip_augmented(self, y):
-
- nl = self.model[-1].nl
- g = sum(4 ** x for x in range(nl))
- e = 1
- i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))
- y[0] = y[0][:, :-i]
- i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))
- y[-1] = y[-1][:, i:]
- return y
- def _initialize_biases(self, cf=None):
-
-
- m = self.model[-1]
- for mi, s in zip(m.m, m.stride):
- b = mi.bias.view(m.na, -1)
- b.data[:, 4] += math.log(8 / (640 / s) ** 2)
- b.data[:, 5:5 + m.nc] += math.log(0.6 / (m.nc - 0.99999)) if cf is None else torch.log(cf / cf.sum())
- mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- Model = DetectionModel
- class SegmentationModel(DetectionModel):
-
- def __init__(self, cfg='yolov5s-seg.yaml', ch=3, nc=None, anchors=None):
- super().__init__(cfg, ch, nc, anchors)
- class ClassificationModel(BaseModel):
-
- def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):
- super().__init__()
- self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
- def _from_detection_model(self, model, nc=1000, cutoff=10):
-
- if isinstance(model, DetectMultiBackend):
- model = model.model
- model.model = model.model[:cutoff]
- m = model.model[-1]
- ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels
- c = Classify(ch, nc)
- c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'
- model.model[-1] = c
- self.model = model.model
- self.stride = model.stride
- self.save = []
- self.nc = nc
- def _from_yaml(self, cfg):
-
- self.model = None
- def parse_model(d, ch):
-
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
- anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
- if act:
- Conv.default_act = eval(act)
- LOGGER.info(f"{colorstr('activation:')} {act}")
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors
- no = na * (nc + 5)
- layers, save, c2 = [], [], ch[-1]
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
- m = eval(m) if isinstance(m, str) else m
- for j, a in enumerate(args):
- with contextlib.suppress(NameError):
- args[j] = eval(a) if isinstance(a, str) else a
- n = n_ = max(round(n * gd), 1) if n > 1 else n
- if m in {
- Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
- BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
- c1, c2 = ch[f], args[0]
- if c2 != no:
- c2 = make_divisible(c2 * gw, 8)
- args = [c1, c2, *args[1:]]
- if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
- args.insert(2, n)
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum(ch[x] for x in f)
-
- elif m in {Detect, Segment}:
- args.append([ch[x] for x in f])
- if isinstance(args[1], int):
- args[1] = [list(range(args[1] * 2))] * len(f)
- if m is Segment:
- args[3] = make_divisible(args[3] * gw, 8)
- elif m is Contract:
- c2 = ch[f] * args[0] ** 2
- elif m is Expand:
- c2 = ch[f] // args[0] ** 2
- else:
- c2 = ch[f]
- m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)
- t = str(m)[8:-2].replace('__main__.', '')
- np = sum(x.numel() for x in m_.parameters())
- m_.i, m_.f, m_.type, m_.np = i, f, t, np
- LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}')
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)
- layers.append(m_)
- if i == 0:
- ch = []
- ch.append(c2)
- return nn.Sequential(*layers), sorted(save)
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
- parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--profile', action='store_true', help='profile model speed')
- parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
- parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
- opt = parser.parse_args()
- opt.cfg = check_yaml(opt.cfg)
- print_args(vars(opt))
- device = select_device(opt.device)
-
- im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
- model = Model(opt.cfg).to(device)
-
- if opt.line_profile:
- model(im, profile=True)
- elif opt.profile:
- results = profile(input=im, ops=[model], n=3)
- elif opt.test:
- for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
- try:
- _ = Model(cfg)
- except Exception as e:
- print(f'Error in {cfg}: {e}')
- else:
- model.fuse()
|