123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- """
- Experimental modules
- """
- import math
- import numpy as np
- import torch
- import torch.nn as nn
- from utils.downloads import attempt_download
- class Sum(nn.Module):
-
- def __init__(self, n, weight=False):
- super().__init__()
- self.weight = weight
- self.iter = range(n - 1)
- if weight:
- self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)
- def forward(self, x):
- y = x[0]
- if self.weight:
- w = torch.sigmoid(self.w) * 2
- for i in self.iter:
- y = y + x[i + 1] * w[i]
- else:
- for i in self.iter:
- y = y + x[i + 1]
- return y
- class MixConv2d(nn.Module):
-
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
- super().__init__()
- n = len(k)
- if equal_ch:
- i = torch.linspace(0, n - 1E-6, c2).floor()
- c_ = [(i == g).sum() for g in range(n)]
- else:
- b = [c2] + [0] * n
- a = np.eye(n + 1, n, k=-1)
- a -= np.roll(a, 1, axis=1)
- a *= np.array(k) ** 2
- a[0] = 1
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()
- self.m = nn.ModuleList([
- nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU()
- def forward(self, x):
- return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
- class Ensemble(nn.ModuleList):
-
- def __init__(self):
- super().__init__()
- def forward(self, x, augment=False, profile=False, visualize=False):
- y = [module(x, augment, profile, visualize)[0] for module in self]
-
-
- y = torch.cat(y, 1)
- return y, None
- def attempt_load(weights, device=None, inplace=True, fuse=True):
-
- from models.yolo import Detect, Model
- model = Ensemble()
- for w in weights if isinstance(weights, list) else [weights]:
- ckpt = torch.load(attempt_download(w), map_location='cpu')
- ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float()
-
- if not hasattr(ckpt, 'stride'):
- ckpt.stride = torch.tensor([32.])
- if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
- ckpt.names = dict(enumerate(ckpt.names))
- model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval())
-
- for m in model.modules():
- t = type(m)
- if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
- m.inplace = inplace
- if t is Detect and not isinstance(m.anchor_grid, list):
- delattr(m, 'anchor_grid')
- setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
- elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
- m.recompute_scale_factor = None
-
- if len(model) == 1:
- return model[-1]
-
- print(f'Ensemble created with {weights}\n')
- for k in 'names', 'nc', 'yaml':
- setattr(model, k, getattr(model[0], k))
- model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride
- assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
- return model
|