123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Logging utils
- """
- import os
- import warnings
- from pathlib import Path
- import pkg_resources as pkg
- import torch
- from utils.general import LOGGER, colorstr, cv2
- from utils.loggers.clearml.clearml_utils import ClearmlLogger
- from utils.loggers.wandb.wandb_utils import WandbLogger
- from utils.plots import plot_images, plot_labels, plot_results
- from utils.torch_utils import de_parallel
- LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet') # *.csv, TensorBoard, Weights & Biases, ClearML
- RANK = int(os.getenv('RANK', -1))
- try:
- from torch.utils.tensorboard import SummaryWriter
- except ImportError:
- SummaryWriter = lambda *args: None # None = SummaryWriter(str)
- try:
- import wandb
- assert hasattr(wandb, '__version__') # verify package import not local dir
- if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
- try:
- wandb_login_success = wandb.login(timeout=30)
- except wandb.errors.UsageError: # known non-TTY terminal issue
- wandb_login_success = False
- if not wandb_login_success:
- wandb = None
- except (ImportError, AssertionError):
- wandb = None
- try:
- import clearml
- assert hasattr(clearml, '__version__') # verify package import not local dir
- except (ImportError, AssertionError):
- clearml = None
- try:
- if RANK in {0, -1}:
- import comet_ml
- assert hasattr(comet_ml, '__version__') # verify package import not local dir
- from utils.loggers.comet import CometLogger
- else:
- comet_ml = None
- except (ImportError, AssertionError):
- comet_ml = None
- class Loggers():
- # YOLOv5 Loggers class
- def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
- self.save_dir = save_dir
- self.weights = weights
- self.opt = opt
- self.hyp = hyp
- self.plots = not opt.noplots # plot results
- self.logger = logger # for printing results to console
- self.include = include
- self.keys = [
- 'train/box_loss',
- 'train/obj_loss',
- 'train/cls_loss', # train loss
- 'metrics/precision',
- 'metrics/recall',
- 'metrics/mAP_0.5',
- 'metrics/mAP_0.5:0.95', # metrics
- 'val/box_loss',
- 'val/obj_loss',
- 'val/cls_loss', # val loss
- 'x/lr0',
- 'x/lr1',
- 'x/lr2'] # params
- self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
- for k in LOGGERS:
- setattr(self, k, None) # init empty logger dictionary
- self.csv = True # always log to csv
- # Messages
- if not comet_ml:
- prefix = colorstr('Comet: ')
- s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
- self.logger.info(s)
- # TensorBoard
- s = self.save_dir
- if 'tb' in self.include and not self.opt.evolve:
- prefix = colorstr('TensorBoard: ')
- self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
- self.tb = SummaryWriter(str(s))
- # W&B
- if wandb and 'wandb' in self.include:
- self.opt.hyp = self.hyp # add hyperparameters
- self.wandb = WandbLogger(self.opt)
- else:
- self.wandb = None
- # ClearML
- if clearml and 'clearml' in self.include:
- try:
- self.clearml = ClearmlLogger(self.opt, self.hyp)
- except Exception:
- self.clearml = None
- prefix = colorstr('ClearML: ')
- LOGGER.warning(f'{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging.'
- f' See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme')
- else:
- self.clearml = None
- # Comet
- if comet_ml and 'comet' in self.include:
- if isinstance(self.opt.resume, str) and self.opt.resume.startswith('comet://'):
- run_id = self.opt.resume.split('/')[-1]
- self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
- else:
- self.comet_logger = CometLogger(self.opt, self.hyp)
- else:
- self.comet_logger = None
- @property
- def remote_dataset(self):
- # Get data_dict if custom dataset artifact link is provided
- data_dict = None
- if self.clearml:
- data_dict = self.clearml.data_dict
- if self.wandb:
- data_dict = self.wandb.data_dict
- if self.comet_logger:
- data_dict = self.comet_logger.data_dict
- return data_dict
- def on_train_start(self):
- if self.comet_logger:
- self.comet_logger.on_train_start()
- def on_pretrain_routine_start(self):
- if self.comet_logger:
- self.comet_logger.on_pretrain_routine_start()
- def on_pretrain_routine_end(self, labels, names):
- # Callback runs on pre-train routine end
- if self.plots:
- plot_labels(labels, names, self.save_dir)
- paths = self.save_dir.glob('*labels*.jpg') # training labels
- if self.wandb:
- self.wandb.log({'Labels': [wandb.Image(str(x), caption=x.name) for x in paths]})
- # if self.clearml:
- # pass # ClearML saves these images automatically using hooks
- if self.comet_logger:
- self.comet_logger.on_pretrain_routine_end(paths)
- def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
- log_dict = dict(zip(self.keys[:3], vals))
- # Callback runs on train batch end
- # ni: number integrated batches (since train start)
- if self.plots:
- if ni < 3:
- f = self.save_dir / f'train_batch{ni}.jpg' # filename
- plot_images(imgs, targets, paths, f)
- if ni == 0 and self.tb and not self.opt.sync_bn:
- log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
- if ni == 10 and (self.wandb or self.clearml):
- files = sorted(self.save_dir.glob('train*.jpg'))
- if self.wandb:
- self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
- if self.clearml:
- self.clearml.log_debug_samples(files, title='Mosaics')
- if self.comet_logger:
- self.comet_logger.on_train_batch_end(log_dict, step=ni)
- def on_train_epoch_end(self, epoch):
- # Callback runs on train epoch end
- if self.wandb:
- self.wandb.current_epoch = epoch + 1
- if self.comet_logger:
- self.comet_logger.on_train_epoch_end(epoch)
- def on_val_start(self):
- if self.comet_logger:
- self.comet_logger.on_val_start()
- def on_val_image_end(self, pred, predn, path, names, im):
- # Callback runs on val image end
- if self.wandb:
- self.wandb.val_one_image(pred, predn, path, names, im)
- if self.clearml:
- self.clearml.log_image_with_boxes(path, pred, names, im)
- def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
- if self.comet_logger:
- self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
- def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
- # Callback runs on val end
- if self.wandb or self.clearml:
- files = sorted(self.save_dir.glob('val*.jpg'))
- if self.wandb:
- self.wandb.log({'Validation': [wandb.Image(str(f), caption=f.name) for f in files]})
- if self.clearml:
- self.clearml.log_debug_samples(files, title='Validation')
- if self.comet_logger:
- self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
- def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
- # Callback runs at the end of each fit (train+val) epoch
- x = dict(zip(self.keys, vals))
- if self.csv:
- file = self.save_dir / 'results.csv'
- n = len(x) + 1 # number of cols
- s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
- with open(file, 'a') as f:
- f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
- if self.tb:
- for k, v in x.items():
- self.tb.add_scalar(k, v, epoch)
- elif self.clearml: # log to ClearML if TensorBoard not used
- for k, v in x.items():
- title, series = k.split('/')
- self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
- if self.wandb:
- if best_fitness == fi:
- best_results = [epoch] + vals[3:7]
- for i, name in enumerate(self.best_keys):
- self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
- self.wandb.log(x)
- self.wandb.end_epoch()
- if self.clearml:
- self.clearml.current_epoch_logged_images = set() # reset epoch image limit
- self.clearml.current_epoch += 1
- if self.comet_logger:
- self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
- def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
- # Callback runs on model save event
- if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
- if self.wandb:
- self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
- if self.clearml:
- self.clearml.task.update_output_model(model_path=str(last),
- model_name='Latest Model',
- auto_delete_file=False)
- if self.comet_logger:
- self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
- def on_train_end(self, last, best, epoch, results):
- # Callback runs on training end, i.e. saving best model
- if self.plots:
- plot_results(file=self.save_dir / 'results.csv') # save results.png
- files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
- files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
- self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
- if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
- for f in files:
- self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
- if self.wandb:
- self.wandb.log(dict(zip(self.keys[3:10], results)))
- self.wandb.log({'Results': [wandb.Image(str(f), caption=f.name) for f in files]})
- # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
- if not self.opt.evolve:
- wandb.log_artifact(str(best if best.exists() else last),
- type='model',
- name=f'run_{self.wandb.wandb_run.id}_model',
- aliases=['latest', 'best', 'stripped'])
- self.wandb.finish_run()
- if self.clearml and not self.opt.evolve:
- self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
- name='Best Model',
- auto_delete_file=False)
- if self.comet_logger:
- final_results = dict(zip(self.keys[3:10], results))
- self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
- def on_params_update(self, params: dict):
- # Update hyperparams or configs of the experiment
- if self.wandb:
- self.wandb.wandb_run.config.update(params, allow_val_change=True)
- if self.comet_logger:
- self.comet_logger.on_params_update(params)
- class GenericLogger:
- """
- YOLOv5 General purpose logger for non-task specific logging
- Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
- Arguments
- opt: Run arguments
- console_logger: Console logger
- include: loggers to include
- """
- def __init__(self, opt, console_logger, include=('tb', 'wandb')):
- # init default loggers
- self.save_dir = Path(opt.save_dir)
- self.include = include
- self.console_logger = console_logger
- self.csv = self.save_dir / 'results.csv' # CSV logger
- if 'tb' in self.include:
- prefix = colorstr('TensorBoard: ')
- self.console_logger.info(
- f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
- self.tb = SummaryWriter(str(self.save_dir))
- if wandb and 'wandb' in self.include:
- self.wandb = wandb.init(project=web_project_name(str(opt.project)),
- name=None if opt.name == 'exp' else opt.name,
- config=opt)
- else:
- self.wandb = None
- def log_metrics(self, metrics, epoch):
- # Log metrics dictionary to all loggers
- if self.csv:
- keys, vals = list(metrics.keys()), list(metrics.values())
- n = len(metrics) + 1 # number of cols
- s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
- with open(self.csv, 'a') as f:
- f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
- if self.tb:
- for k, v in metrics.items():
- self.tb.add_scalar(k, v, epoch)
- if self.wandb:
- self.wandb.log(metrics, step=epoch)
- def log_images(self, files, name='Images', epoch=0):
- # Log images to all loggers
- files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
- files = [f for f in files if f.exists()] # filter by exists
- if self.tb:
- for f in files:
- self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
- if self.wandb:
- self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
- def log_graph(self, model, imgsz=(640, 640)):
- # Log model graph to all loggers
- if self.tb:
- log_tensorboard_graph(self.tb, model, imgsz)
- def log_model(self, model_path, epoch=0, metadata={}):
- # Log model to all loggers
- if self.wandb:
- art = wandb.Artifact(name=f'run_{wandb.run.id}_model', type='model', metadata=metadata)
- art.add_file(str(model_path))
- wandb.log_artifact(art)
- def update_params(self, params):
- # Update the parameters logged
- if self.wandb:
- wandb.run.config.update(params, allow_val_change=True)
- def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
- # Log model graph to TensorBoard
- try:
- p = next(model.parameters()) # for device, type
- imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
- im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
- with warnings.catch_warnings():
- warnings.simplefilter('ignore') # suppress jit trace warning
- tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
- except Exception as e:
- LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')
- def web_project_name(project):
- # Convert local project name to web project name
- if not project.startswith('runs/train'):
- return project
- suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
- return f'YOLOv5{suffix}'
|