123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- """
- Auto-batch utils
- """
- from copy import deepcopy
- import numpy as np
- import torch
- from utils.general import LOGGER, colorstr
- from utils.torch_utils import profile
- def check_train_batch_size(model, imgsz=640, amp=True):
-
- with torch.cuda.amp.autocast(amp):
- return autobatch(deepcopy(model).train(), imgsz)
- def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
-
-
-
-
-
-
-
- prefix = colorstr('AutoBatch: ')
- LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
- device = next(model.parameters()).device
- if device.type == 'cpu':
- LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
- return batch_size
- if torch.backends.cudnn.benchmark:
- LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
- return batch_size
-
- gb = 1 << 30
- d = str(device).upper()
- properties = torch.cuda.get_device_properties(device)
- t = properties.total_memory / gb
- r = torch.cuda.memory_reserved(device) / gb
- a = torch.cuda.memory_allocated(device) / gb
- f = t - (r + a)
- LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
-
- batch_sizes = [1, 2, 4, 8, 16]
- try:
- img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
- results = profile(img, model, n=3, device=device)
- except Exception as e:
- LOGGER.warning(f'{prefix}{e}')
-
- y = [x[2] for x in results if x]
- p = np.polyfit(batch_sizes[:len(y)], y, deg=1)
- b = int((f * fraction - p[1]) / p[0])
- if None in results:
- i = results.index(None)
- if b >= batch_sizes[i]:
- b = batch_sizes[max(i - 1, 0)]
- if b < 1 or b > 1024:
- b = batch_size
- LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
- fraction = (np.polyval(p, b) + r + a) / t
- LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
- return b
|