123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- """
- AutoAnchor utils
- """
- import random
- import numpy as np
- import torch
- import yaml
- from tqdm import tqdm
- from utils import TryExcept
- from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
- PREFIX = colorstr('AutoAnchor: ')
- def check_anchor_order(m):
-
- a = m.anchors.prod(-1).mean(-1).view(-1)
- da = a[-1] - a[0]
- ds = m.stride[-1] - m.stride[0]
- if da and (da.sign() != ds.sign()):
- LOGGER.info(f'{PREFIX}Reversing anchor order')
- m.anchors[:] = m.anchors.flip(0)
- @TryExcept(f'{PREFIX}ERROR')
- def check_anchors(dataset, model, thr=4.0, imgsz=640):
-
- m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]
- shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
- scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))
- wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()
- def metric(k):
- r = wh[:, None] / k[None]
- x = torch.min(r, 1 / r).min(2)[0]
- best = x.max(1)[0]
- aat = (x > 1 / thr).float().sum(1).mean()
- bpr = (best > 1 / thr).float().mean()
- return bpr, aat
- stride = m.stride.to(m.anchors.device).view(-1, 1, 1)
- anchors = m.anchors.clone() * stride
- bpr, aat = metric(anchors.cpu().view(-1, 2))
- s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
- if bpr > 0.98:
- LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
- else:
- LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
- na = m.anchors.numel() // 2
- anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
- new_bpr = metric(anchors)[0]
- if new_bpr > bpr:
- anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
- m.anchors[:] = anchors.clone().view_as(m.anchors)
- check_anchor_order(m)
- m.anchors /= stride
- s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
- else:
- s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
- LOGGER.info(s)
- def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
- """ Creates kmeans-evolved anchors from training dataset
- Arguments:
- dataset: path to data.yaml, or a loaded dataset
- n: number of anchors
- img_size: image size used for training
- thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
- gen: generations to evolve anchors using genetic algorithm
- verbose: print all results
- Return:
- k: kmeans evolved anchors
- Usage:
- from utils.autoanchor import *; _ = kmean_anchors()
- """
- from scipy.cluster.vq import kmeans
- npr = np.random
- thr = 1 / thr
- def metric(k, wh):
- r = wh[:, None] / k[None]
- x = torch.min(r, 1 / r).min(2)[0]
-
- return x, x.max(1)[0]
- def anchor_fitness(k):
- _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
- return (best * (best > thr).float()).mean()
- def print_results(k, verbose=True):
- k = k[np.argsort(k.prod(1))]
- x, best = metric(k, wh0)
- bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n
- s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
- f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
- f'past_thr={x[x > thr].mean():.3f}-mean: '
- for x in k:
- s += '%i,%i, ' % (round(x[0]), round(x[1]))
- if verbose:
- LOGGER.info(s[:-2])
- return k
- if isinstance(dataset, str):
- with open(dataset, errors='ignore') as f:
- data_dict = yaml.safe_load(f)
- from utils.dataloaders import LoadImagesAndLabels
- dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
-
- shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
- wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])
-
- i = (wh0 < 3.0).any(1).sum()
- if i:
- LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
- wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32)
-
-
- try:
- LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
- assert n <= len(wh)
- s = wh.std(0)
- k = kmeans(wh / s, n, iter=30)[0] * s
- assert n == len(k)
- except Exception:
- LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
- k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size
- wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
- k = print_results(k, verbose=False)
-
-
-
-
-
-
-
-
-
-
-
-
- f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1
- pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT)
- for _ in pbar:
- v = np.ones(sh)
- while (v == 1).all():
- v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
- kg = (k.copy() * v).clip(min=2.0)
- fg = anchor_fitness(kg)
- if fg > f:
- f, k = fg, kg.copy()
- pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
- if verbose:
- print_results(k, verbose)
- return print_results(k).astype(np.float32)
|