123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from pydantic import BaseModel
- from ultralytics import YOLO
- import os
- import cv2
- import numpy as np
- class Model(nn.Module):
- def __init__(self, A, nnode, nfeature, nclass):
- super().__init__()
- self.fc1 = nn.Linear(nnode * nfeature, 512)
- self.fc2 = nn.Linear(512, nclass)
- def forward(self, x):
- x = x.view(-1, int(x.size(1) * x.size(2)))
- x = F.relu(self.fc1(x))
- x = F.dropout(x, 0.7, training=self.training)
- return self.fc2(x)
- def extract_keypoint(get_keypoint, keypoint):
- # nose
- nose_x, nose_y = keypoint[get_keypoint.NOSE]
- # eye
- # left_eye_x, left_eye_y = keypoint[get_keypoint.LEFT_EYE]
- # right_eye_x, right_eye_y = keypoint[get_keypoint.RIGHT_EYE]
- # # ear
- # left_ear_x, left_ear_y = keypoint[get_keypoint.LEFT_EAR]
- # right_ear_x, right_ear_y = keypoint[get_keypoint.RIGHT_EAR]
- # shoulder
- left_shoulder_x, left_shoulder_y = keypoint[get_keypoint.LEFT_SHOULDER]
- right_shoulder_x, right_shoulder_y = keypoint[get_keypoint.RIGHT_SHOULDER]
- # elbow
- left_elbow_x, left_elbow_y = keypoint[get_keypoint.LEFT_ELBOW]
- right_elbow_x, right_elbow_y = keypoint[get_keypoint.RIGHT_ELBOW]
- # wrist
- left_wrist_x, left_wrist_y = keypoint[get_keypoint.LEFT_WRIST]
- right_wrist_x, right_wrist_y = keypoint[get_keypoint.RIGHT_WRIST]
- # hip
- left_hip_x, left_hip_y = keypoint[get_keypoint.LEFT_HIP]
- right_hip_x, right_hip_y = keypoint[get_keypoint.RIGHT_HIP]
- # knee
- left_knee_x, left_knee_y = keypoint[get_keypoint.LEFT_KNEE]
- right_knee_x, right_knee_y = keypoint[get_keypoint.RIGHT_KNEE]
- # ankle
- left_ankle_x, left_ankle_y = keypoint[get_keypoint.LEFT_ANKLE]
- right_ankle_x, right_ankle_y = keypoint[get_keypoint.RIGHT_ANKLE]
-
- return [
- nose_x, nose_y ,
- left_shoulder_x, left_shoulder_y ,
- right_shoulder_x, right_shoulder_y,
- left_elbow_x, left_elbow_y,
- right_elbow_x, right_elbow_y,
- left_wrist_x, left_wrist_y,
- right_wrist_x, right_wrist_y,
- left_hip_x, left_hip_y,
- right_hip_x, right_hip_y,
- left_knee_x, left_knee_y,
- right_knee_x, right_knee_y,
- left_ankle_x, left_ankle_y,
- right_ankle_x, right_ankle_y
- ]
- class GetKeypoint(BaseModel):
- NOSE: int = 0
- LEFT_EYE: int = 1
- RIGHT_EYE: int = 2
- LEFT_EAR: int = 3
- RIGHT_EAR: int = 4
- LEFT_SHOULDER: int = 5
- RIGHT_SHOULDER: int = 6
- LEFT_ELBOW: int = 7
- RIGHT_ELBOW: int = 8
- LEFT_WRIST: int = 9
- RIGHT_WRIST: int = 10
- LEFT_HIP: int = 11
- RIGHT_HIP: int = 12
- LEFT_KNEE: int = 13
- RIGHT_KNEE: int = 14
- LEFT_ANKLE: int = 15
- RIGHT_ANKLE: int = 16
- class Box(BaseModel):
- left : int
- top : int
- right : int
- bottom : int
- box_conf : float
- pose_classifer_conf : float
- label : str
- class YoloPoseClassfier(object):
- def __init__(self, device_id, yolo_pose_model_path, pose_classfier_model_path, confidence_threshold=0.5):
- self.confidence_threshold = confidence_threshold
- self.device = torch.device("cpu") if device_id == -1 else torch.device(f"cuda:{device_id}")
- # define get key point function
- self.get_keypoint = GetKeypoint()
- # load model
- self.pose_classfier_model = Model(None, 13, 2, 2)
- self.pose_classfier_model.load_state_dict(torch.load(pose_classfier_model_path))
- self.pose_classfier_model.eval()
- self.pose_classfier_model.to(self.device)
- self.yolo_pose_model = YOLO(yolo_pose_model_path)
- self.yolo_pose_model.to(self.device)
- # 新增躯干角度校验函数
- def calculate_torso_angle(keypoints):
- # 获取肩膀(索引5、6)和臀部(索引11、12)关键点
- left_shoulder = keypoints[5]
- right_shoulder = keypoints[6]
- left_hip = keypoints[11]
- right_hip = keypoints[12]
- # 计算肩膀中点与臀部中点的向量
- shoulder_center = ((left_shoulder[0] + right_shoulder[0]) / 2,
- (left_shoulder[1] + right_shoulder[1]) / 2)
- hip_center = ((left_hip[0] + right_hip[0]) / 2,
- (left_hip[1] + right_hip[1]) / 2)
- # 计算与垂直方向的夹角(跌倒时角度接近90度)
- dx = hip_center[0] - shoulder_center[0]
- dy = hip_center[1] - shoulder_center[1]
- angle = np.degrees(np.arctan2(abs(dx), abs(dy)))
- return angle
- def __call__(self, image : np.ndarray):
- pose_classfier_results = []
- yolo_pose_results = self.yolo_pose_model(image, conf=self.confidence_threshold)
- for result in yolo_pose_results[0]:
- boxes = result.boxes.xyxy.cpu().numpy().tolist()
- confs = result.boxes.conf.cpu().numpy().tolist()
- all_keypoints = result.keypoints.data.cpu().numpy().tolist()
- for box, conf, keypoints in zip(boxes, confs, all_keypoints):
- x1, y1, x2, y2 = box
- x, y, w, h = x1, y1, x2 - x1, y2 - y1
- n_keypoints = [[(kp[0] - x) / w - 0.5, (kp[1] - y) / h - 0.5] if kp[0] > 0 and kp[1] > 0 else kp[:2] for kp in keypoints]
- n_keypoints = extract_keypoint(self.get_keypoint, n_keypoints)
- if n_keypoints[-12:].count(0) >= 2 * 2:
- continue
- if n_keypoints.count(0) >= 4 * 2:
- continue
- if w < h:
- continue
- pose_data = torch.Tensor([n_keypoints]).to(self.device)
- pose_data = pose_data.reshape(1, 13, 2)
- with torch.no_grad():
- p = self.pose_classfier_model(pose_data)
- prob = F.softmax(p)
- index = prob.argmax()
- if index == 0:
- score = float(prob[0][index].cpu().numpy())
- pose_classfier_results.append(
- Box(left=x1, top=y1, right=x2, bottom=y2, box_conf=conf, pose_classifer_conf=score, label="falling"))
- return pose_classfier_results
-
- if __name__ == "__main__":
- yolo_pose_model_path = "yolo11l-pose.pt"
- pose_classfier_model_path = "fall_cls.pth"
- model = YoloPoseClassfier(-1, yolo_pose_model_path, pose_classfier_model_path, 0.5)
- test_images_dir = r"C:\Users\86187\Desktop\fall_test"
- save_image_dir = "."
- for image_name in os.listdir(test_images_dir):
- print(image_name)
- image_path = os.path.join(test_images_dir, image_name)
- image = cv2.imread(image_path)
- pose_classfier_results = model(image)
- for res in pose_classfier_results:
- cv2.rectangle(image, (int(res.left), int(res.top)), (int(res.right), int(res.bottom)), (0, 255, 0), 2)
- cv2.imwrite(os.path.join(save_image_dir, image_name), image)
|