123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- # YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
- """
- Validate a trained YOLOv5 classification model on a classification dataset
- Usage:
- $ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images)
- $ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet
- Usage - formats:
- $ python classify/val.py --weights yolov5s-cls.pt # PyTorch
- yolov5s-cls.torchscript # TorchScript
- yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s-cls_openvino_model # OpenVINO
- yolov5s-cls.engine # TensorRT
- yolov5s-cls.mlmodel # CoreML (macOS-only)
- yolov5s-cls_saved_model # TensorFlow SavedModel
- yolov5s-cls.pb # TensorFlow GraphDef
- yolov5s-cls.tflite # TensorFlow Lite
- yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU
- yolov5s-cls_paddle_model # PaddlePaddle
- """
- import argparse
- import os
- import sys
- from pathlib import Path
- import torch
- from tqdm import tqdm
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.common import DetectMultiBackend
- from utils.dataloaders import create_classification_dataloader
- from utils.general import (LOGGER, TQDM_BAR_FORMAT, Profile, check_img_size, check_requirements, colorstr,
- increment_path, print_args)
- from utils.torch_utils import select_device, smart_inference_mode
- @smart_inference_mode()
- def run(
- data=ROOT / '../datasets/mnist', # dataset dir
- weights=ROOT / 'yolov5s-cls.pt', # model.pt path(s)
- batch_size=128, # batch size
- imgsz=224, # inference size (pixels)
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- workers=8, # max dataloader workers (per RANK in DDP mode)
- verbose=False, # verbose output
- project=ROOT / 'runs/val-cls', # save to project/name
- name='exp', # save to project/name
- exist_ok=False, # existing project/name ok, do not increment
- half=False, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- model=None,
- dataloader=None,
- criterion=None,
- pbar=None,
- ):
- # Initialize/load model and set device
- training = model is not None
- if training: # called by train.py
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
- half &= device.type != 'cpu' # half precision only supported on CUDA
- model.half() if half else model.float()
- else: # called directly
- device = select_device(device, batch_size=batch_size)
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- save_dir.mkdir(parents=True, exist_ok=True) # make dir
- # Load model
- model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_img_size(imgsz, s=stride) # check image size
- half = model.fp16 # FP16 supported on limited backends with CUDA
- if engine:
- batch_size = model.batch_size
- else:
- device = model.device
- if not (pt or jit):
- batch_size = 1 # export.py models default to batch-size 1
- LOGGER.info(f'Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models')
- # Dataloader
- data = Path(data)
- test_dir = data / 'test' if (data / 'test').exists() else data / 'val' # data/test or data/val
- dataloader = create_classification_dataloader(path=test_dir,
- imgsz=imgsz,
- batch_size=batch_size,
- augment=False,
- rank=-1,
- workers=workers)
- model.eval()
- pred, targets, loss, dt = [], [], 0, (Profile(), Profile(), Profile())
- n = len(dataloader) # number of batches
- action = 'validating' if dataloader.dataset.root.stem == 'val' else 'testing'
- desc = f'{pbar.desc[:-36]}{action:>36}' if pbar else f'{action}'
- bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0)
- with torch.cuda.amp.autocast(enabled=device.type != 'cpu'):
- for images, labels in bar:
- with dt[0]:
- images, labels = images.to(device, non_blocking=True), labels.to(device)
- with dt[1]:
- y = model(images)
- with dt[2]:
- pred.append(y.argsort(1, descending=True)[:, :5])
- targets.append(labels)
- if criterion:
- loss += criterion(y, labels)
- loss /= n
- pred, targets = torch.cat(pred), torch.cat(targets)
- correct = (targets[:, None] == pred).float()
- acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy
- top1, top5 = acc.mean(0).tolist()
- if pbar:
- pbar.desc = f'{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}'
- if verbose: # all classes
- LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}")
- LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}")
- for i, c in model.names.items():
- acc_i = acc[targets == i]
- top1i, top5i = acc_i.mean(0).tolist()
- LOGGER.info(f'{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}')
- # Print results
- t = tuple(x.t / len(dataloader.dataset.samples) * 1E3 for x in dt) # speeds per image
- shape = (1, 3, imgsz, imgsz)
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}' % t)
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
- return top1, top5, loss
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / '../datasets/mnist', help='dataset path')
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s-cls.pt', help='model.pt path(s)')
- parser.add_argument('--batch-size', type=int, default=128, help='batch size')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=224, help='inference size (pixels)')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
- parser.add_argument('--verbose', nargs='?', const=True, default=True, help='verbose output')
- parser.add_argument('--project', default=ROOT / 'runs/val-cls', help='save to project/name')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- opt = parser.parse_args()
- print_args(vars(opt))
- return opt
- def main(opt):
- check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
- run(**vars(opt))
- if __name__ == '__main__':
- opt = parse_opt()
- main(opt)
|