123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- from ultralytics.solutions.solutions import BaseSolution
- from ultralytics.utils.plotting import Annotator, colors
- from shapely.geometry import Point
- class PersonJump(BaseSolution):
- """
- A class to manage the counting of objects in a real-time video stream based on their tracks.
- This class extends the BaseSolution class and provides functionality for counting objects moving in and out of a
- specified region in a video stream. It supports both polygonal and linear regions for counting.
- Attributes:
- in_count (int): Counter for objects moving inward.
- out_count (int): Counter for objects moving outward.
- counted_ids (List[int]): List of IDs of objects that have been counted.
- classwise_counts (Dict[str, Dict[str, int]]): Dictionary for counts, categorized by object class.
- region_initialized (bool): Flag indicating whether the counting region has been initialized.
- show_in (bool): Flag to control display of inward count.
- show_out (bool): Flag to control display of outward count.
- Methods:
- count_objects: Counts objects within a polygonal or linear region.
- store_classwise_counts: Initializes class-wise counts if not already present.
- display_counts: Displays object counts on the frame.
- count: Processes input data (frames or object tracks) and updates counts.
- Examples:
- >>> counter = ObjectCounter()
- >>> frame = cv2.imread("frame.jpg")
- >>> processed_frame = counter.count(frame)
- >>> print(f"Inward count: {counter.in_count}, Outward count: {counter.out_count}")
- """
- def __init__(self, **kwargs):
- """Initializes the ObjectCounter class for real-time object counting in video streams."""
- super().__init__(**kwargs)
- self.in_count = 0 # Counter for objects moving inward
- self.out_count = 0 # Counter for objects moving outward
- self.counted_ids = [] # List of IDs of objects that have been counted
- self.classwise_counts = {} # Dictionary for counts, categorized by object class
- self.region_initialized = False # Bool variable for region initialization
- self.show_in = self.CFG["show_in"]
- self.show_out = self.CFG["show_out"]
- def count_objects(self, track_line, box, track_id, prev_position, cls):
- """
- Counts objects within a polygonal or linear region based on their tracks.
- Args:
- track_line (Dict): Last 30 frame track record for the object.
- box (List[float]): Bounding box coordinates [x1, y1, x2, y2] for the specific track in the current frame.
- track_id (int): Unique identifier for the tracked object.
- prev_position (Tuple[float, float]): Last frame position coordinates (x, y) of the track.
- cls (int): Class index for classwise count updates.
- Examples:
- >>> counter = ObjectCounter()
- >>> track_line = {1: [100, 200], 2: [110, 210], 3: [120, 220]}
- >>> box = [130, 230, 150, 250]
- >>> track_id = 1
- >>> prev_position = (120, 220)
- >>> cls = 0
- >>> counter.count_objects(track_line, box, track_id, prev_position, cls)
- """
- if prev_position is None or track_id in self.counted_ids:
- return
- # centroid = self.r_s.centroid
-
- if len(self.region) >= 3 and self.r_s.contains(Point(track_line[-1])):
- self.counted_ids.append(track_id)
- dy = track_line[-1][1] - prev_position[1]
- if dy > 0:
- self.in_count += 1
-
-
- def store_classwise_counts(self, cls):
- """
- Initialize class-wise counts for a specific object class if not already present.
- Args:
- cls (int): Class index for classwise count updates.
- This method ensures that the 'classwise_counts' dictionary contains an entry for the specified class,
- initializing 'IN' and 'OUT' counts to zero if the class is not already present.
- Examples:
- >>> counter = ObjectCounter()
- >>> counter.store_classwise_counts(0) # Initialize counts for class index 0
- >>> print(counter.classwise_counts)
- {'person': {'IN': 0, 'OUT': 0}}
- """
- if self.names[cls] not in self.classwise_counts:
- self.classwise_counts[self.names[cls]] = {"IN": 0, "OUT": 0}
- def display_counts(self, im0):
- """
- Displays object counts on the input image or frame.
- Args:
- im0 (numpy.ndarray): The input image or frame to display counts on.
- Examples:
- >>> counter = ObjectCounter()
- >>> frame = cv2.imread("image.jpg")
- >>> counter.display_counts(frame)
- """
- labels_dict = {
- str.capitalize(key): f"{'IN ' + str(value['IN']) if self.show_in else ''} "
- f"{'OUT ' + str(value['OUT']) if self.show_out else ''}".strip()
- for key, value in self.classwise_counts.items()
- if value["IN"] != 0 or value["OUT"] != 0
- }
- if labels_dict:
- self.annotator.display_analytics(im0, labels_dict, (104, 31, 17), (255, 255, 255), 10)
- def count(self, im0):
- """
- Processes input data (frames or object tracks) and updates object counts.
- This method initializes the counting region, extracts tracks, draws bounding boxes and regions, updates
- object counts, and displays the results on the input image.
- Args:
- im0 (numpy.ndarray): The input image or frame to be processed.
- Returns:
- (numpy.ndarray): The processed image with annotations and count information.
- Examples:
- >>> counter = ObjectCounter()
- >>> frame = cv2.imread("path/to/image.jpg")
- >>> processed_frame = counter.count(frame)
- """
- if not self.region_initialized:
- self.initialize_region()
- self.region_initialized = True
- self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
- self.extract_tracks(im0) # Extract tracks
- self.annotator.draw_region(
- reg_pts=self.region, color=(104, 0, 123), thickness=self.line_width * 2
- ) # Draw region
- # Iterate over bounding boxes, track ids and classes index
- for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
- # Draw bounding box and counting region
- self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True))
- self.store_tracking_history(track_id, box) # Store track history
- self.store_classwise_counts(cls) # store classwise counts in dict
- # Draw tracks of objects
- self.annotator.draw_centroid_and_tracks(
- self.track_line, color=colors(int(cls), True), track_thickness=self.line_width
- )
- # store previous position of track for object counting
- prev_position = None
- if len(self.track_history[track_id]) > 1:
- prev_position = self.track_history[track_id][-2]
- self.count_objects(self.track_line, box, track_id, prev_position, cls) # Perform object counting
- # self.display_counts(im0) # Display the counts on the frame
- self.display_output(im0) # display output with base class function
- return im0 # return output image for more usage
|