123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883 |
- from pathlib import Path
- import matplotlib.path as mat
- from utils.general import strtolstl
- from utils.general import compute_IOU
- from torchvision import transforms
- from PIL import Image
- import torch
- import torch.nn.functional as F
- import numpy as np
- from ultralytics.engine.results import Results
- from shapely.geometry import Point
- from shapely.geometry.polygon import Polygon
- mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
- test = transforms.Compose([transforms.Resize((224,224)),
- #transforms.CenterCrop(224),
- transforms.ToTensor(),
- transforms.Normalize(mean=mean, std=std)
- ])
- def clapre(modelcla,claimg,clapoint):
- imgten = torch.stack(claimg,dim=0)
- clapoint = torch.stack(clapoint,dim=0)
- imgten = imgten.to(0)
- result = modelcla(imgten)
- result = F.softmax(result)
- print(result)
- index = result.argmax(1)
- index = index.cpu().numpy()
- index = np.argwhere(index<5)
- index = index.reshape(-1)
- print(index)
- if len(index)>0:
- print(clapoint[index])
- return clapoint[index]
- else:
- return None
- class Helmet:
- def __init__(self):
- self.flag = False
- def getflag(self,det,persondet,annotator,fence=0,point=None,names=None,rname=None,num=1):
- #print(type(det))
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class Uniform:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (
- int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class Fall:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class Personcount:
- def __init__(self):
- self.flag = False
- def getflag(self, det,persondet, annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- detnum = 0
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- #self.flag = True
- detnum = detnum+1
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- detnum = detnum+1
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- #self.flag = True
- else:
- if persondet is None:
- #self.flag = True
- detnum = detnum+1
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- detnum = detnum+1
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- #self.flag = True
- if detnum >= num:
- self.flag = True
- return self.flag
-
- class Arm:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0,0,255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(np.array(person).reshape(-1,2)).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
-
- class Bag:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
-
- class Cross:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- detnum = 0
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- detnum = detnum+1
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- detnum = detnum+1
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- detnum = detnum+1
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- detnum = detnum +1
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class Extinguisher:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- def calculate_iou(box1, box2):
- # 计算交集区域 也就是找到次左上 次右下
- x1_int = max(box1[0], box2[0])
- y1_int = max(box1[1], box2[1])
- x2_int = min(box1[2], box2[2])
- y2_int = min(box1[3], box2[3])
- # 交集区域的宽高
- width_int = max(0, x2_int - x1_int)
- height_int = max(0, y2_int - y1_int)
- area_int = width_int * height_int
- # 计算两个框的面积
- area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
- area_box2 = (box2[2] - box2[0]) * (box2[3] - box1[1])
- # 计算并集面积
- area_union = area_box1 + area_box2 - area_int
- # 计算IoU
- iou = area_int / area_union if area_union > 0 else 0
- return iou
- def check_cls4_overlap(person_box, target_box, cls4_boxes):
- """
- 检查是否有 cls4 物体在目标框与人物框交集区域内,并计算交集面积与 cls4 物体面积的重叠比率。
- 返回重叠比率最大值以及其对应的交集区域坐标和 cls4 框。
- 参数:
- person_box (tuple): 人物框 (x_min, y_min, x_max, y_max)
- target_box (tuple): 目标框 (x_min, y_min, x_max, y_max)
- cls4_boxes (list): cls4 物体框的列表,每个框为 (x_min, y_min, x_max, y_max)
- 返回:
- tuple:
- - 最大的重叠比率 (float),如果没有符合条件的物体则为 None。
- - 最大重叠比率对应的交集区域的坐标 (inter_x1, inter_y1)。
- - 对应的 cls4 框 (tuple),如果没有符合条件的物体则为 None。
- """
- # 计算目标框与人物框的交集区域
- min_x = max(person_box[0], target_box[0])
- min_y = max(person_box[1], target_box[1])
- max_x = min(person_box[2], target_box[2])
- max_y = min(person_box[3], target_box[3])
- target_area = (min_x, min_y, max_x, max_y) # 交集区域
- max_overlap_ratio = -1 # 用于存储最大的重叠比率 这设置为-1有助于区别是否计算了
- best_inter_x1 = 0 # 用于存储最大重叠比率对应的交集坐标
- best_inter_y1 = 0
- best_cls4_box = [] # 用于存储对应的 cls4 框 不能初始化为整数0 整数不可迭代 后序不能添加
- # 检查是否有 cls4 物体在交集区域内
- for cls4_box in cls4_boxes:
- # 判断 cls4 框是否与交集区域有交集
- inter_x1 = max(cls4_box[0], target_area[0])
- inter_y1 = max(cls4_box[1], target_area[1])
- inter_x2 = min(cls4_box[2], target_area[2])
- inter_y2 = min(cls4_box[3], target_area[3])
- if inter_x1 < inter_x2 and inter_y1 < inter_y2:
- # 计算交集区域的面积
- intersection_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)
- #print("交集的面积", intersection_area)
- # 计算 cls4_box 的面积
- cls4_area = (cls4_box[2] - cls4_box[0]) * (cls4_box[3] - cls4_box[1])
- #print("cls4_area的面积是", cls4_area)
- # 计算交集区域占 cls4_box 面积的比例
- overlap_ratio = intersection_area / cls4_area
- # 更新最大重叠比率及其相关信息
- if max_overlap_ratio == 0 or overlap_ratio > max_overlap_ratio:
- max_overlap_ratio = overlap_ratio
- best_inter_x1 = inter_x1
- best_inter_y1 = inter_y1
- best_cls4_box = cls4_box
- return max_overlap_ratio, (best_inter_x1, best_inter_y1), best_cls4_box
- class Persontre1:
- def __init__(self):
- self.flag = False
- self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
- self.flag = False
- dirp = {}
- dirf = {}
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- if c==0:
- dirp.setdefault(0,[])
- dirp[0].append(xyxy)
- elif c in [1,2]:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- dirf.setdefault(1,[])
- dirf[1].append(xyxy)
- elif c==3:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- elif c==4:
- dirf.setdefault(0,[])
- dirf[0].append(xyxy)
- #annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- #annotator.box_label(xyxy, None, color=(0, 0, 255))
- #self.flag = True
- if c==0:
- dirp.setdefault(0,[])
- dirp[0].append(xyxy)
- elif c in [1,2]:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- dirf.setdefault(1,[])
- dirf[1].append(xyxy)
- elif c==3:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- elif c==4:
- dirf.setdefault(0,[])
- dirf[0].append(xyxy)
- else:
- if persondet is None:
- #self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- #label = None
- #annotator.box_label(xyxy, None, color=(0, 0, 255))
- if c==0:
- dirp.setdefault(0,[])
- dirp[0].append(xyxy)
- elif c in [1,2]:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- dirf.setdefault(1,[])
- dirf[1].append(xyxy)
- elif c==3:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- elif c==4:
- dirf.setdefault(0,[])
- dirf[0].append(xyxy)
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- #annotator.box_label(xyxy, None, color=(0, 0, 255))
- #self.flag = True
- if c==0:
- dirp.setdefault(0,[])
- dirp[0].append(xyxy)
- elif c in [1,2]:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- dirf.setdefault(1,[])
- dirf[1].append(xyxy)
- elif c==3:
- dirp.setdefault(1,[])
- dirp[1].append(xyxy)
- elif c==4:
- dirf.setdefault(0,[])
- dirf[0].append(xyxy)
- if len(dirp.keys()) == 2:
- claimg = []
- clapoint = []
- for person in dirp[0]:
- for other in dirp[1]:
- iou, newxyxy = compute_IOU(person, other)
- if iou>0.1:
- print(newxyxy)
- imgtmp = im0[int(newxyxy[1]):int(newxyxy[3]),int(newxyxy[0]):int(newxyxy[2])]
- imgtmp = imgtmp[...,::-1]
- imgtmp = Image.fromarray(imgtmp)
- imgten1 = test(imgtmp)
- claimg.append(imgten1)
- clapoint.append((newxyxy))
- result = clapre(self.classifier_model,claimg,clapoint)
- #imgten = imgten1[None]
- #imgten = imgten.to(0)
- #result = modelcla(imgten)
- #result = F.softmax(result, dim=1)
- #cla = result.argmax(1)
- if result is not None:
- self.flag = True
- for res in result:
- print(res)
- annotator.box_label(res, None, color=(0,0,255))
- if len(dirp.keys()) == 2:
- claimg = []
- clapoint = []
- for person in dirp[0]:
- for other in dirp[1]:
- iou, newxyxy = compute_IOU(person, other)
- if iou>0.1:
- print(newxyxy)
- imgtmp = im0[int(newxyxy[1]):int(newxyxy[3]),int(newxyxy[0]):int(newxyxy[2])]
- imgtmp = imgtmp[...,::-1]
- imgtmp = Image.fromarray(imgtmp)
- imgten1 = test(imgtmp)
- claimg.append(imgten1)
- clapoint.append((newxyxy))
- result = clapre(self.classifier_model,claimg,clapoint)
- #imgten = imgten1[None]
- #imgten = imgten.to(0)
- #result = modelcla(imgten)
- #result = F.softmax(result, dim=1)
- #cla = result.argmax(1)
- if result is not None:
- self.flag = True
- for res in result:
- print(res)
- annotator.box_label(res, None, color=(0,0,255))
- return self.flag
- class Persontree:
- def __init__(self):
- self.flag = False
- self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
- self.flag = False
- target_classes = [1, 2, 3]
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- boxes = results.boxes
- person_boxes = []
- target_boxes = []
- cls4_boxes = []
- # 处理检测结果
- for i in range(len(boxes)):
- cls = int(boxes.cls[i].item())
- con = boxes.conf[i].item()
- if cls == 0 and con > 0.1: # 如果是 "person" 类别
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- person_boxes.append([x1, y1, x2, y2])
- if cls in target_classes and con > 0.1: # 目标类别(bag, box, cart)
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- target_boxes.append([x1, y1, x2, y2])
- if cls == 4 and con > 0.1: # 如果是 "cls 4" 类别
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- cls4_boxes.append([x1, y1, x2, y2])
- # 如果检测到 "person" 类别和目标框,计算IoU
- if person_boxes and target_boxes:
- for i, person_box in enumerate(person_boxes):
- person_center_y = (person_box[1] + person_box[3]) / 2
- for j, target_box in enumerate(target_boxes):
- target_center_y = (target_box[1] + target_box[3]) / 2
- # 判断目标框的中心点是否在person框的下方
- if target_center_y + 20 > person_center_y: # 根据需要调整此阈值
- iou = calculate_iou(person_box, target_box)
- if iou > 0: # IoU大于0,进入新的判断
- # 创建一个包围person和target框的区域 本来思路是判断脚是否在这个大框框里面 但是这个不合理 应该判断脚是不是在这个交集里面,再检测脚和人与物交集有没有交集
- min_x = max(person_box[0], target_box[0])
- min_y = max(person_box[1], target_box[1])
- max_x = min(person_box[2], target_box[2])
- max_y = min(person_box[3], target_box[3])
- target_area = (min_x, min_y, max_x, max_y)
- # 检查是否有cls 4物体在这个区域内
- for cls4_box in cls4_boxes: #比较巧妙 提前存储这个变量 然后检测这个物体是不是在这里面
- # 判断cls 4框是否与这个区域有交集
- inter_x1 = max(cls4_box[0], target_area[0])
- inter_y1 = max(cls4_box[1], target_area[1])
- inter_x2 = min(cls4_box[2], target_area[2])
- inter_y2 = min(cls4_box[3], target_area[3])
- if inter_x1 < inter_x2 and inter_y1 < inter_y2:
- # 计算交集区域的面积
- intersection_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)
- # 计算 cls4_box 的面积
- cls4_area = (cls4_box[2] - cls4_box[0]) * (cls4_box[3] - cls4_box[1])
- # 计算交集区域占 cls4_box 面积的比例
- overlap_ratio = intersection_area / cls4_area
- if overlap_ratio > 0.5:
- self.flag = True
- return self.flag
- class Persontre:
- def __init__(self):
- self.flag = False
- self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
- self.flag = False
- cls3 =3 #对cart单独一类
- cls4 = 4 # 新增加的类别编号(假设为 4)
- target_classes = [1, 2, 3]
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- boxes = results.boxes
- person_boxes = [] # 人 车子 脚 以及 指定区域内的脚
- cls3_boxes = []
- cls4_boxes = []
- best_cls4_box = []
- # 处理检测结果
- for i in range(len(boxes)):
- cls = int(boxes.cls[i].item())
- con = boxes.conf[i].item()
- if cls == 0 and con > 0.1: # 如果是 "person" 类别 先把对应类别添加上去 先把每一个识别物体输入上去
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- person_boxes.append([x1, y1, x2, y2])
- if cls == cls3 and con > 0.1: # 目标类别 cart
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- cls3_boxes.append([x1, y1, x2, y2])
- if cls == cls4 and con > 0.1: # 如果是 "cls 4" 类别
- x1, y1, x2, y2 = boxes.xyxy[i].tolist()
- cls4_boxes.append([x1, y1, x2, y2])
- # 如果检测到 "person" 类别和目标框,计算IoU
- if person_boxes and cls3_boxes: # 先查看这俩个类别有没有
- for i, person_box in enumerate(person_boxes):
- for j, cls3_box in enumerate(cls3_boxes):
- # 判断目标框的中心点是否在person框的下方
- iou = calculate_iou(person_box, cls3_box)
- # 踩的逻辑 一个是要求车子和人有交并比 其次判断脚是不是在这个交并比内 并且比重不能太低
- if iou > 0.2: # 用来判断坐 如果iou足够高 就视为是坐
- # 加载图像并绘制标注
- # 看看这个值大概有多少 好衡量一下
- #print(f"这个iou大于0.2的 这是第{frame_idx},iou是{iou}") # 写入介绍
- annotator.box_label(person_box, None, color=(0, 0, 255))
- annotator.box_label(cls3_box, None, color=(0, 0, 255))
- self.flag = True
- #print("这是坐",f"{saved_image_path}")
- elif iou > 0 : # IoU大于0,进入新的判断 代表不是坐
- # 创建一个包围person和target框的区域 本来思路是判断脚是否在这个大框框里面 但是这个不合理 应该判断脚是不是在这个交集里面,再检测脚和人与物交集有没有交集
- overlap_ratio, inter_xy, best_cls4_box1 = check_cls4_overlap(person_box, cls3_box,cls4_boxes)
- best_cls4_box.extend(best_cls4_box1) #拿到这四个点的坐标
- inter_x1, inter_y1 = inter_xy
- # 如果占比大于某个阈值,可以执行进一步的操作
- if overlap_ratio > 0.2:
- annotator.box_label(person_box, None, color=(0, 0, 255))
- annotator.box_label(cls3_box, None, color=(0, 0, 255))
- annotator.box_label(best_cls4_box, None, color=(0, 0, 255))
- self.flag = True
- class Danager:
- def __init__(self):
- self.flag = False
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- for *xyxy, conf, cls in reversed(det):
- c = int(cls)
- labelname = names[c]
- if labelname in rname:
- if fence == 1:
- pointa = strtolstl(point)
- for poi in pointa:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 2),
- int(xyxy[1].cpu().item() + (xyxy[3].cpu().item() - xyxy[1].cpu().item()) / 2))
- #p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- #xyxy[3].cpu().item())
- pt = [p1]
- inflag = mat.Path(poi).contains_points(pt)
- if inflag.any():
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- else:
- if persondet is None:
- self.flag = True
- # c = int(cls) # integer class
- # label = f'{self.names[c]} {conf:.2f}'
- label = None
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- else:
- for person in persondet:
- p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- xyxy[3].cpu().item())
- p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- xyxy[3].cpu().item())
- pt = [p1, p2]
- personinflag = mat.Path(person).contains_points(pt)
- if personinflag.any():
- annotator.box_label(xyxy, None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class CarHelmetBelt:
- def __init__(self):
- self.flag = False
- def selectNoBeltPerson(self, person_objs, belt_objs):
- objs = []
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_belt = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in belt_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_belt = False
- for belt in polygon_belt:
- if person.intersection(belt).area / belt.area > 0.5:
- with_belt = True
- break
- if not with_belt:
- objs.append(person_obj)
- return objs
- def selectWithPersonHead(self, person_objs, head_objs):
- objs = []
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, top + (bottom - top)/2), (left, top + (bottom - top)/2)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_head = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
- for head_obj, head in zip(head_objs, polygon_head):
- with_person = False
- for person in polygon_person:
- print('head')
- if person.intersection(head).area / head.area > 0.5:
- with_person = True
- break
- if with_person:
- objs.append(head_obj)
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- person_objs = []
- head_objs = []
- belt_objs = []
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- for result in results:
- boxes = result.boxes
- for box in boxes:
- #print(box.conf.cpu())
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- if intersection_areas_ratio[-1] < 0.9:
- continue
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- if cls == 0:
- person_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls == 1:
- head_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls == 3:
- belt_objs.append([left, top, right, bottom, conf, names[cls]])
- #print(head_objs)
- #print(person_objs)
- illegal_objs = self.selectNoBeltPerson(person_objs, belt_objs) + self.selectWithPersonHead(person_objs, head_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class newUniformi1:
- def __init__(self):
- self.flag = False
- def selectNoUniformPerson(self, person_objs, uniform_objs):
- objs = []
- print(person_objs)
- print(uniform_objs)
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_uniform = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_uniform = False
- for uniform in polygon_uniform:
- if person.intersection(uniform).area / uniform.area > 0.3:
- with_uniform = True
- break
- if not with_uniform:
- print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
- objs.append(person_obj)
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- print(results.boxes)
- person_objs = []
- uniform_objs = []
- #belt_objs = []
- if len(point)>1:
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- else:
- self.polygon_areas = None
- if persondet is not None:
- if self.polygon_areas is not None:
- for left, top, right,top,right, bottom,left,bottom in persondet:
- polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in
- self.polygon_areas]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted(
- [intersection_area / polygon_box.area for intersection_area in intersection_areas])
- print(f'inter = {intersection_areas_ratio}')
- if intersection_areas_ratio[-1] >= 0.3:
- print("person in check space!!!")
- width = right - left
- height = bottom - top
- print(f'{left}, {top}, {right},{top},{right}, {bottom},{left},{bottom}')
- print(f'hw = {width* height}')
- if width * height > 10000:
- person_objs.append([left, top, right, bottom, 0.25, 'person'])
- for result in results:
- boxes = result.boxes
- for box in boxes:
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- # if self.polygon_areas is not None :
- # if persondet is None and box.cls.cpu().numpy().tolist()[0] == 4:
- # polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- #
- # intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- # if sum(intersection_areas) == 0:
- # continue
- #
- # intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- # print(f'inter = {intersection_areas_ratio}')
- # if intersection_areas_ratio[-1] < 0.3:
- # continue
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- # if persondet is not None:
- # if cls == 4 and conf >=0.7:
- # width = right - left
- # height = bottom - top
- # if width * height >10000:
- # person_objs.append([left, top, right, bottom, conf, names[cls]])
- if cls in [1,2]:
- #width = right - left
- #height = bottom - top
- #if width * height >4096:
- uniform_objs.append([left, top, right, bottom, conf, names[cls]])
-
- print(f'personobjs = {person_objs}')
- print(f'uniformobjs = {uniform_objs}')
- illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
- class newHelmet:
- def __init__(self):
- self.flag = False
- def selectNoHelmetPerson(self, person_objs, head_objs):
- objs = []
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_head = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_head = False
- for head in polygon_head:
- print('head')
- if person.intersection(head).area / head.area > 0.3:
- with_head = True
- break
- if with_head:
- objs.append(person_obj)
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- person_objs = []
- head_objs = []
- helmet_objs = []
- headtmp = []
- #belt_objs = []
- if len(point)>1:
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- else:
- self.polygon_areas = None
- for result in results:
- boxes = result.boxes
- for box in boxes:
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- if self.polygon_areas is not None:
- polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- if intersection_areas_ratio[-1] < 0.9:
- continue
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- #print(f'{conf} {cls}')
- #print(cls in [5,6,7,8,9,10])
- if cls == 4 and conf >=0.7:
- width = right - left
- height = bottom - top
- if width * height >4096:
- person_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls == 0 and conf >= 0.5:
- #width = right - left
- #height = bottom - top
- #if width * height >4096:
- print('------')
- headtmp.append([left, top, right, bottom, conf, names[cls]])
- elif cls in [5,6,7,8,9,10]:
- helmet_objs.append([(left, top), (right, top), (right, bottom), (left, bottom)])
- print(f'headtmp= {headtmp}')
- print(f'helmet_objs = {helmet_objs}')
- for left, top, right, bottom, conf, name in headtmp:
- flag = False
- pt = [(int((left+right)/2),int((top+bottom)/2))]
- for helmet in helmet_objs:
- pflag = mat.Path(helmet).contains_points(pt)
- if pflag.any():
- flag = True
- break
- if not flag:
- head_objs.append([left, top, right, bottom, conf, name])
- illegal_objs = self.selectNoHelmetPerson(person_objs, head_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
-
- class newHelmetn:
- def __init__(self):
- self.flag = False
- def selectNoHelmetPerson(self, person_objs, head_objs):
- objs = []
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_head = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_head = False
- for head in polygon_head:
- if person.intersection(head).area / head.area > 0.3:
- with_head = True
- break
- if with_head:
- objs.append(person_obj)
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- person_objs = []
- head_objs = []
- #belt_objs = []
- if len(point)>1:
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- else:
- self.polygon_areas = None
- for result in results:
- boxes = result.boxes
- for box in boxes:
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- if self.polygon_areas is not None:
- polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- if intersection_areas_ratio[-1] < 0.9:
- continue
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- if cls == 4:
- width = right - left
- height = bottom - top
- if width * height >4096:
- person_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls == 0:
- #width = right - left
- #height = bottom - top
- #if width * height >4096:
- head_objs.append([left, top, right, bottom, conf, names[cls]])
-
- illegal_objs = self.selectNoHelmetPerson(person_objs, head_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
-
- class newUniformt:
- def __init__(self):
- self.flag = False
- def selectNoUniformPerson(self, person_objs, uniform_objs):
- objs = []
- print(person_objs)
- print(uniform_objs)
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_uniform = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_uniform = False
- for uniform in polygon_uniform:
- if person.intersection(uniform).area / uniform.area > 0.3:
- with_uniform = True
- break
- if not with_uniform:
- print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
- objs.append(person_obj)
- return objs
- def selectHeadPerson(self, person_objs, head_objs):
- objs = []
- print(person_objs)
- print(head_objs)
- #personlist = []
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_head = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- #with_uniform = False
- for head in polygon_head:
- if person.intersection(head).area / head.area > 0.3:
- #with_uniform = True
- #break
- #if not with_uniform:
- # print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
- objs.append(person_obj)
- break
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- print(results.boxes)
- person_objs = []
- uniform_objs = []
- head_objs = []
- #belt_objs = []
- if len(point)>1:
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- else:
- self.polygon_areas = None
- for result in results:
- boxes = result.boxes
- for box in boxes:
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- if self.polygon_areas is not None:
- polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- if intersection_areas_ratio[-1] < 0.9:
- continue
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- if cls == 4:
- width = right - left
- height = bottom - top
- if width * height >4096:
- person_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls in [1,2]:
- #width = right - left
- #height = bottom - top
- #if width * height >4096:
- uniform_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls != 3:
- head_objs.append([left, top, right, bottom, conf, names[cls]])
-
- person_objs = self.selectNoUniformPerson(person_objs, head_objs)
- illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
-
- class newUniform:
- def __init__(self):
- self.flag = False
- def selectNoUniformPerson(self, person_objs, uniform_objs):
- objs = []
- print(person_objs)
- print(uniform_objs)
- polygon_person = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
- polygon_uniform = [Polygon(
- [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
- for person_obj, person in zip(person_objs, polygon_person):
- with_uniform = False
- for uniform in polygon_uniform:
- if person.intersection(uniform).area / uniform.area > 0.3:
- with_uniform = True
- break
- if not with_uniform:
- print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
- objs.append(person_obj)
- return objs
- def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
- self.flag = False
- results = Results(annotator.result(),path=None,names=names,boxes=det)
- print(results.boxes)
- person_objs = []
- uniform_objs = []
- print(f'persondet = {persondet}')
- #belt_objs = []
- if len(point)>1:
- self.polygon_areas = [Polygon(strtolstl(point)[0])]
- print(self.polygon_areas)
- else:
- self.polygon_areas = None
- tmppersondet = []
- if self.polygon_areas is not None:
- for person in persondet:
- polygon_box = Polygon([(person[0], person[1]), (person[2], person[3]), (person[4], person[5]), (person[6], person[7])])
- intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- if sum(intersection_areas) == 0:
- continue
- intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- #print(intersection_areas_ratio)
- if intersection_areas_ratio[-1] < 0.9:
- continue
- tmppersondet.append(person)
- persondet = tmppersondet
- print(f'tmppersondet = {tmppersondet}')
- #persondet = tmppersondet
- for result in results:
- boxes = result.boxes
- for box in boxes:
- left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
- conf = box.conf.cpu().numpy().tolist()[0]
- cls = box.cls.cpu().numpy().tolist()[0]
- #if self.polygon_areas is not None and cls == 4:
- # polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
- # intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
- # if sum(intersection_areas) == 0:
- # continue
- # intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
- # if intersection_areas_ratio[-1] < 0.9:
- # continue
- #conf = box.conf.cpu().numpy().tolist()[0]
- #cls = box.cls.cpu().numpy().tolist()[0]
- print(conf)
- print(cls)
- if cls == 4 and conf >=0.7:
- width = right - left
- height = bottom - top
- print(width*height)
- if width * height >10000:
- for person in persondet:
- #p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
- #xyxy[3].cpu().item())
- #p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
- # xyxy[3].cpu().item())
- personcenterx = int((person[0]+person[2])/2)
- personcentery = int((person[1]+person[7])/2)
- p1 = (personcenterx,personcentery)
- print(p1)
- pt = [p1]
- print(f'p1 = {p1}')
- print(f'person = {person}')
- personinflag = mat.Path([(left, top), (right, top), (right, bottom), (left, bottom)]).contains_points(pt)
- if personinflag.any():
- person_objs.append([left, top, right, bottom, conf, names[cls]])
- elif cls in [1,2]:
- #width = right - left
- #height = bottom - top
- #if width * height >4096:
- uniform_objs.append([left, top, right, bottom, conf, names[cls]])
-
- illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
- if len(illegal_objs)>0:
- for obj in illegal_objs:
- annotator.box_label(obj[:4], None, color=(0, 0, 255))
- self.flag = True
- return self.flag
|