renwu.py 71 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883
  1. from pathlib import Path
  2. import matplotlib.path as mat
  3. from utils.general import strtolstl
  4. from utils.general import compute_IOU
  5. from torchvision import transforms
  6. from PIL import Image
  7. import torch
  8. import torch.nn.functional as F
  9. import numpy as np
  10. from ultralytics.engine.results import Results
  11. from shapely.geometry import Point
  12. from shapely.geometry.polygon import Polygon
  13. mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
  14. test = transforms.Compose([transforms.Resize((224,224)),
  15. #transforms.CenterCrop(224),
  16. transforms.ToTensor(),
  17. transforms.Normalize(mean=mean, std=std)
  18. ])
  19. def clapre(modelcla,claimg,clapoint):
  20. imgten = torch.stack(claimg,dim=0)
  21. clapoint = torch.stack(clapoint,dim=0)
  22. imgten = imgten.to(0)
  23. result = modelcla(imgten)
  24. result = F.softmax(result)
  25. print(result)
  26. index = result.argmax(1)
  27. index = index.cpu().numpy()
  28. index = np.argwhere(index<5)
  29. index = index.reshape(-1)
  30. print(index)
  31. if len(index)>0:
  32. print(clapoint[index])
  33. return clapoint[index]
  34. else:
  35. return None
  36. class Helmet:
  37. def __init__(self):
  38. self.flag = False
  39. def getflag(self,det,persondet,annotator,fence=0,point=None,names=None,rname=None,num=1):
  40. #print(type(det))
  41. self.flag = False
  42. for *xyxy, conf, cls in reversed(det):
  43. c = int(cls)
  44. labelname = names[c]
  45. if labelname in rname:
  46. if fence == 1:
  47. pointa = strtolstl(point)
  48. for poi in pointa:
  49. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  50. xyxy[3].cpu().item())
  51. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  52. xyxy[3].cpu().item())
  53. pt = [p1, p2]
  54. inflag = mat.Path(poi).contains_points(pt)
  55. if inflag.any():
  56. if persondet is None:
  57. self.flag = True
  58. # c = int(cls) # integer class
  59. # label = f'{self.names[c]} {conf:.2f}'
  60. label = None
  61. annotator.box_label(xyxy, None, color=(0, 0, 255))
  62. else:
  63. for person in persondet:
  64. personinflag = mat.Path(person).contains_points(pt)
  65. if personinflag.any():
  66. annotator.box_label(xyxy, None, color=(0, 0, 255))
  67. self.flag = True
  68. else:
  69. if persondet is None:
  70. self.flag = True
  71. # c = int(cls) # integer class
  72. # label = f'{self.names[c]} {conf:.2f}'
  73. label = None
  74. annotator.box_label(xyxy, None, color=(0, 0, 255))
  75. else:
  76. for person in persondet:
  77. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  78. xyxy[3].cpu().item())
  79. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  80. xyxy[3].cpu().item())
  81. pt = [p1, p2]
  82. personinflag = mat.Path(person).contains_points(pt)
  83. if personinflag.any():
  84. annotator.box_label(xyxy, None, color=(0, 0, 255))
  85. self.flag = True
  86. return self.flag
  87. class Uniform:
  88. def __init__(self):
  89. self.flag = False
  90. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  91. self.flag = False
  92. for *xyxy, conf, cls in reversed(det):
  93. c = int(cls)
  94. labelname = names[c]
  95. if labelname in rname:
  96. if fence == 1:
  97. pointa = strtolstl(point)
  98. for poi in pointa:
  99. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  100. xyxy[3].cpu().item())
  101. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  102. xyxy[3].cpu().item())
  103. pt = [p1, p2]
  104. inflag = mat.Path(poi).contains_points(pt)
  105. if inflag.any():
  106. if persondet is None:
  107. self.flag = True
  108. # c = int(cls) # integer class
  109. # label = f'{self.names[c]} {conf:.2f}'
  110. label = None
  111. annotator.box_label(xyxy, None, color=(0, 0, 255))
  112. else:
  113. for person in persondet:
  114. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  115. xyxy[3].cpu().item())
  116. p2 = (
  117. int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  118. xyxy[3].cpu().item())
  119. pt = [p1, p2]
  120. personinflag = mat.Path(person).contains_points(pt)
  121. if personinflag.any():
  122. annotator.box_label(xyxy, None, color=(0, 0, 255))
  123. self.flag = True
  124. else:
  125. if persondet is None:
  126. self.flag = True
  127. # c = int(cls) # integer class
  128. # label = f'{self.names[c]} {conf:.2f}'
  129. label = None
  130. annotator.box_label(xyxy, None, color=(0, 0, 255))
  131. else:
  132. for person in persondet:
  133. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  134. xyxy[3].cpu().item())
  135. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  136. xyxy[3].cpu().item())
  137. pt = [p1, p2]
  138. personinflag = mat.Path(person).contains_points(pt)
  139. if personinflag.any():
  140. annotator.box_label(xyxy, None, color=(0, 0, 255))
  141. self.flag = True
  142. return self.flag
  143. class Fall:
  144. def __init__(self):
  145. self.flag = False
  146. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  147. self.flag = False
  148. for *xyxy, conf, cls in reversed(det):
  149. c = int(cls)
  150. labelname = names[c]
  151. if labelname in rname:
  152. if fence == 1:
  153. pointa = strtolstl(point)
  154. for poi in pointa:
  155. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  156. xyxy[3].cpu().item())
  157. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  158. xyxy[3].cpu().item())
  159. pt = [p1, p2]
  160. inflag = mat.Path(poi).contains_points(pt)
  161. if inflag.any():
  162. if persondet is None:
  163. self.flag = True
  164. # c = int(cls) # integer class
  165. # label = f'{self.names[c]} {conf:.2f}'
  166. label = None
  167. annotator.box_label(xyxy, None, color=(0, 0, 255))
  168. else:
  169. for person in persondet:
  170. personinflag = mat.Path(person).contains_points(pt)
  171. if personinflag.any():
  172. annotator.box_label(xyxy, None, color=(0, 0, 255))
  173. self.flag = True
  174. else:
  175. if persondet is None:
  176. self.flag = True
  177. # c = int(cls) # integer class
  178. # label = f'{self.names[c]} {conf:.2f}'
  179. label = None
  180. annotator.box_label(xyxy, None, color=(0, 0, 255))
  181. else:
  182. for person in persondet:
  183. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  184. xyxy[3].cpu().item())
  185. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  186. xyxy[3].cpu().item())
  187. pt = [p1, p2]
  188. personinflag = mat.Path(person).contains_points(pt)
  189. if personinflag.any():
  190. annotator.box_label(xyxy, None, color=(0, 0, 255))
  191. self.flag = True
  192. return self.flag
  193. class Personcount:
  194. def __init__(self):
  195. self.flag = False
  196. def getflag(self, det,persondet, annotator, fence=0, point=None, names=None, rname=None,num=1):
  197. self.flag = False
  198. detnum = 0
  199. for *xyxy, conf, cls in reversed(det):
  200. c = int(cls)
  201. labelname = names[c]
  202. if labelname in rname:
  203. if fence == 1:
  204. pointa = strtolstl(point)
  205. for poi in pointa:
  206. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  207. xyxy[3].cpu().item())
  208. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  209. xyxy[3].cpu().item())
  210. pt = [p1, p2]
  211. inflag = mat.Path(poi).contains_points(pt)
  212. if inflag.any():
  213. if persondet is None:
  214. #self.flag = True
  215. detnum = detnum+1
  216. # c = int(cls) # integer class
  217. # label = f'{self.names[c]} {conf:.2f}'
  218. label = None
  219. annotator.box_label(xyxy, None, color=(0, 0, 255))
  220. else:
  221. for person in persondet:
  222. personinflag = mat.Path(person).contains_points(pt)
  223. if personinflag.any():
  224. detnum = detnum+1
  225. annotator.box_label(xyxy, None, color=(0, 0, 255))
  226. #self.flag = True
  227. else:
  228. if persondet is None:
  229. #self.flag = True
  230. detnum = detnum+1
  231. # c = int(cls) # integer class
  232. # label = f'{self.names[c]} {conf:.2f}'
  233. label = None
  234. annotator.box_label(xyxy, None, color=(0, 0, 255))
  235. else:
  236. for person in persondet:
  237. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  238. xyxy[3].cpu().item())
  239. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  240. xyxy[3].cpu().item())
  241. pt = [p1, p2]
  242. personinflag = mat.Path(person).contains_points(pt)
  243. if personinflag.any():
  244. detnum = detnum+1
  245. annotator.box_label(xyxy, None, color=(0, 0, 255))
  246. #self.flag = True
  247. if detnum >= num:
  248. self.flag = True
  249. return self.flag
  250. class Arm:
  251. def __init__(self):
  252. self.flag = False
  253. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  254. self.flag = False
  255. for *xyxy, conf, cls in reversed(det):
  256. c = int(cls)
  257. labelname = names[c]
  258. if labelname in rname:
  259. if fence == 1:
  260. pointa = strtolstl(point)
  261. for poi in pointa:
  262. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  263. xyxy[3].cpu().item())
  264. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  265. xyxy[3].cpu().item())
  266. pt = [p1, p2]
  267. inflag = mat.Path(poi).contains_points(pt)
  268. if inflag.any():
  269. if persondet is None:
  270. self.flag = True
  271. # c = int(cls) # integer class
  272. # label = f'{self.names[c]} {conf:.2f}'
  273. label = None
  274. annotator.box_label(xyxy, None, color=(0,0,255))
  275. else:
  276. for person in persondet:
  277. personinflag = mat.Path(person).contains_points(pt)
  278. if personinflag.any():
  279. annotator.box_label(xyxy, None, color=(0, 0, 255))
  280. self.flag = True
  281. else:
  282. if persondet is None:
  283. self.flag = True
  284. # c = int(cls) # integer class
  285. # label = f'{self.names[c]} {conf:.2f}'
  286. label = None
  287. annotator.box_label(xyxy, None, color=(0, 0, 255))
  288. else:
  289. for person in persondet:
  290. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  291. xyxy[3].cpu().item())
  292. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  293. xyxy[3].cpu().item())
  294. pt = [p1, p2]
  295. personinflag = mat.Path(np.array(person).reshape(-1,2)).contains_points(pt)
  296. if personinflag.any():
  297. annotator.box_label(xyxy, None, color=(0, 0, 255))
  298. self.flag = True
  299. return self.flag
  300. class Bag:
  301. def __init__(self):
  302. self.flag = False
  303. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  304. self.flag = False
  305. for *xyxy, conf, cls in reversed(det):
  306. c = int(cls)
  307. labelname = names[c]
  308. if labelname in rname:
  309. if fence == 1:
  310. pointa = strtolstl(point)
  311. for poi in pointa:
  312. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  313. xyxy[3].cpu().item())
  314. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  315. xyxy[3].cpu().item())
  316. pt = [p1, p2]
  317. inflag = mat.Path(poi).contains_points(pt)
  318. if inflag.any():
  319. if persondet is None:
  320. self.flag = True
  321. # c = int(cls) # integer class
  322. # label = f'{self.names[c]} {conf:.2f}'
  323. label = None
  324. annotator.box_label(xyxy, None, color=(0, 0, 255))
  325. else:
  326. for person in persondet:
  327. personinflag = mat.Path(person).contains_points(pt)
  328. if personinflag.any():
  329. annotator.box_label(xyxy, None, color=(0, 0, 255))
  330. self.flag = True
  331. else:
  332. if persondet is None:
  333. self.flag = True
  334. # c = int(cls) # integer class
  335. # label = f'{self.names[c]} {conf:.2f}'
  336. label = None
  337. annotator.box_label(xyxy, None, color=(0, 0, 255))
  338. else:
  339. for person in persondet:
  340. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  341. xyxy[3].cpu().item())
  342. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  343. xyxy[3].cpu().item())
  344. pt = [p1, p2]
  345. personinflag = mat.Path(person).contains_points(pt)
  346. if personinflag.any():
  347. annotator.box_label(xyxy, None, color=(0, 0, 255))
  348. self.flag = True
  349. return self.flag
  350. class Cross:
  351. def __init__(self):
  352. self.flag = False
  353. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  354. self.flag = False
  355. detnum = 0
  356. for *xyxy, conf, cls in reversed(det):
  357. c = int(cls)
  358. labelname = names[c]
  359. if labelname in rname:
  360. if fence == 1:
  361. pointa = strtolstl(point)
  362. for poi in pointa:
  363. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  364. xyxy[3].cpu().item())
  365. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  366. xyxy[3].cpu().item())
  367. pt = [p1, p2]
  368. inflag = mat.Path(poi).contains_points(pt)
  369. if inflag.any():
  370. if persondet is None:
  371. detnum = detnum+1
  372. self.flag = True
  373. # c = int(cls) # integer class
  374. # label = f'{self.names[c]} {conf:.2f}'
  375. label = None
  376. annotator.box_label(xyxy, None, color=(0, 0, 255))
  377. else:
  378. for person in persondet:
  379. personinflag = mat.Path(person).contains_points(pt)
  380. if personinflag.any():
  381. detnum = detnum+1
  382. annotator.box_label(xyxy, None, color=(0, 0, 255))
  383. self.flag = True
  384. else:
  385. if persondet is None:
  386. self.flag = True
  387. # c = int(cls) # integer class
  388. # label = f'{self.names[c]} {conf:.2f}'
  389. detnum = detnum+1
  390. label = None
  391. annotator.box_label(xyxy, None, color=(0, 0, 255))
  392. else:
  393. for person in persondet:
  394. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  395. xyxy[3].cpu().item())
  396. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  397. xyxy[3].cpu().item())
  398. pt = [p1, p2]
  399. personinflag = mat.Path(person).contains_points(pt)
  400. if personinflag.any():
  401. detnum = detnum +1
  402. annotator.box_label(xyxy, None, color=(0, 0, 255))
  403. self.flag = True
  404. return self.flag
  405. class Extinguisher:
  406. def __init__(self):
  407. self.flag = False
  408. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  409. self.flag = False
  410. for *xyxy, conf, cls in reversed(det):
  411. c = int(cls)
  412. labelname = names[c]
  413. if labelname in rname:
  414. if fence == 1:
  415. pointa = strtolstl(point)
  416. for poi in pointa:
  417. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  418. xyxy[3].cpu().item())
  419. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  420. xyxy[3].cpu().item())
  421. pt = [p1, p2]
  422. inflag = mat.Path(poi).contains_points(pt)
  423. if inflag.any():
  424. if persondet is None:
  425. self.flag = True
  426. # c = int(cls) # integer class
  427. # label = f'{self.names[c]} {conf:.2f}'
  428. label = None
  429. annotator.box_label(xyxy, None, color=(0, 0, 255))
  430. else:
  431. for person in persondet:
  432. personinflag = mat.Path(person).contains_points(pt)
  433. if personinflag.any():
  434. annotator.box_label(xyxy, None, color=(0, 0, 255))
  435. self.flag = True
  436. else:
  437. if persondet is None:
  438. self.flag = True
  439. # c = int(cls) # integer class
  440. # label = f'{self.names[c]} {conf:.2f}'
  441. label = None
  442. annotator.box_label(xyxy, None, color=(0, 0, 255))
  443. else:
  444. for person in persondet:
  445. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  446. xyxy[3].cpu().item())
  447. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  448. xyxy[3].cpu().item())
  449. pt = [p1, p2]
  450. personinflag = mat.Path(person).contains_points(pt)
  451. if personinflag.any():
  452. annotator.box_label(xyxy, None, color=(0, 0, 255))
  453. self.flag = True
  454. return self.flag
  455. def calculate_iou(box1, box2):
  456. # 计算交集区域 也就是找到次左上 次右下
  457. x1_int = max(box1[0], box2[0])
  458. y1_int = max(box1[1], box2[1])
  459. x2_int = min(box1[2], box2[2])
  460. y2_int = min(box1[3], box2[3])
  461. # 交集区域的宽高
  462. width_int = max(0, x2_int - x1_int)
  463. height_int = max(0, y2_int - y1_int)
  464. area_int = width_int * height_int
  465. # 计算两个框的面积
  466. area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
  467. area_box2 = (box2[2] - box2[0]) * (box2[3] - box1[1])
  468. # 计算并集面积
  469. area_union = area_box1 + area_box2 - area_int
  470. # 计算IoU
  471. iou = area_int / area_union if area_union > 0 else 0
  472. return iou
  473. def check_cls4_overlap(person_box, target_box, cls4_boxes):
  474. """
  475. 检查是否有 cls4 物体在目标框与人物框交集区域内,并计算交集面积与 cls4 物体面积的重叠比率。
  476. 返回重叠比率最大值以及其对应的交集区域坐标和 cls4 框。
  477. 参数:
  478. person_box (tuple): 人物框 (x_min, y_min, x_max, y_max)
  479. target_box (tuple): 目标框 (x_min, y_min, x_max, y_max)
  480. cls4_boxes (list): cls4 物体框的列表,每个框为 (x_min, y_min, x_max, y_max)
  481. 返回:
  482. tuple:
  483. - 最大的重叠比率 (float),如果没有符合条件的物体则为 None。
  484. - 最大重叠比率对应的交集区域的坐标 (inter_x1, inter_y1)。
  485. - 对应的 cls4 框 (tuple),如果没有符合条件的物体则为 None。
  486. """
  487. # 计算目标框与人物框的交集区域
  488. min_x = max(person_box[0], target_box[0])
  489. min_y = max(person_box[1], target_box[1])
  490. max_x = min(person_box[2], target_box[2])
  491. max_y = min(person_box[3], target_box[3])
  492. target_area = (min_x, min_y, max_x, max_y) # 交集区域
  493. max_overlap_ratio = -1 # 用于存储最大的重叠比率 这设置为-1有助于区别是否计算了
  494. best_inter_x1 = 0 # 用于存储最大重叠比率对应的交集坐标
  495. best_inter_y1 = 0
  496. best_cls4_box = [] # 用于存储对应的 cls4 框 不能初始化为整数0 整数不可迭代 后序不能添加
  497. # 检查是否有 cls4 物体在交集区域内
  498. for cls4_box in cls4_boxes:
  499. # 判断 cls4 框是否与交集区域有交集
  500. inter_x1 = max(cls4_box[0], target_area[0])
  501. inter_y1 = max(cls4_box[1], target_area[1])
  502. inter_x2 = min(cls4_box[2], target_area[2])
  503. inter_y2 = min(cls4_box[3], target_area[3])
  504. if inter_x1 < inter_x2 and inter_y1 < inter_y2:
  505. # 计算交集区域的面积
  506. intersection_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)
  507. #print("交集的面积", intersection_area)
  508. # 计算 cls4_box 的面积
  509. cls4_area = (cls4_box[2] - cls4_box[0]) * (cls4_box[3] - cls4_box[1])
  510. #print("cls4_area的面积是", cls4_area)
  511. # 计算交集区域占 cls4_box 面积的比例
  512. overlap_ratio = intersection_area / cls4_area
  513. # 更新最大重叠比率及其相关信息
  514. if max_overlap_ratio == 0 or overlap_ratio > max_overlap_ratio:
  515. max_overlap_ratio = overlap_ratio
  516. best_inter_x1 = inter_x1
  517. best_inter_y1 = inter_y1
  518. best_cls4_box = cls4_box
  519. return max_overlap_ratio, (best_inter_x1, best_inter_y1), best_cls4_box
  520. class Persontre1:
  521. def __init__(self):
  522. self.flag = False
  523. self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
  524. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
  525. self.flag = False
  526. dirp = {}
  527. dirf = {}
  528. for *xyxy, conf, cls in reversed(det):
  529. c = int(cls)
  530. labelname = names[c]
  531. if labelname in rname:
  532. if fence == 1:
  533. pointa = strtolstl(point)
  534. for poi in pointa:
  535. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  536. xyxy[3].cpu().item())
  537. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  538. xyxy[3].cpu().item())
  539. pt = [p1, p2]
  540. inflag = mat.Path(poi).contains_points(pt)
  541. if inflag.any():
  542. if persondet is None:
  543. self.flag = True
  544. # c = int(cls) # integer class
  545. # label = f'{self.names[c]} {conf:.2f}'
  546. label = None
  547. if c==0:
  548. dirp.setdefault(0,[])
  549. dirp[0].append(xyxy)
  550. elif c in [1,2]:
  551. dirp.setdefault(1,[])
  552. dirp[1].append(xyxy)
  553. dirf.setdefault(1,[])
  554. dirf[1].append(xyxy)
  555. elif c==3:
  556. dirp.setdefault(1,[])
  557. dirp[1].append(xyxy)
  558. elif c==4:
  559. dirf.setdefault(0,[])
  560. dirf[0].append(xyxy)
  561. #annotator.box_label(xyxy, None, color=(0, 0, 255))
  562. else:
  563. for person in persondet:
  564. personinflag = mat.Path(person).contains_points(pt)
  565. if personinflag.any():
  566. #annotator.box_label(xyxy, None, color=(0, 0, 255))
  567. #self.flag = True
  568. if c==0:
  569. dirp.setdefault(0,[])
  570. dirp[0].append(xyxy)
  571. elif c in [1,2]:
  572. dirp.setdefault(1,[])
  573. dirp[1].append(xyxy)
  574. dirf.setdefault(1,[])
  575. dirf[1].append(xyxy)
  576. elif c==3:
  577. dirp.setdefault(1,[])
  578. dirp[1].append(xyxy)
  579. elif c==4:
  580. dirf.setdefault(0,[])
  581. dirf[0].append(xyxy)
  582. else:
  583. if persondet is None:
  584. #self.flag = True
  585. # c = int(cls) # integer class
  586. # label = f'{self.names[c]} {conf:.2f}'
  587. #label = None
  588. #annotator.box_label(xyxy, None, color=(0, 0, 255))
  589. if c==0:
  590. dirp.setdefault(0,[])
  591. dirp[0].append(xyxy)
  592. elif c in [1,2]:
  593. dirp.setdefault(1,[])
  594. dirp[1].append(xyxy)
  595. dirf.setdefault(1,[])
  596. dirf[1].append(xyxy)
  597. elif c==3:
  598. dirp.setdefault(1,[])
  599. dirp[1].append(xyxy)
  600. elif c==4:
  601. dirf.setdefault(0,[])
  602. dirf[0].append(xyxy)
  603. else:
  604. for person in persondet:
  605. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  606. xyxy[3].cpu().item())
  607. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  608. xyxy[3].cpu().item())
  609. pt = [p1, p2]
  610. personinflag = mat.Path(person).contains_points(pt)
  611. if personinflag.any():
  612. #annotator.box_label(xyxy, None, color=(0, 0, 255))
  613. #self.flag = True
  614. if c==0:
  615. dirp.setdefault(0,[])
  616. dirp[0].append(xyxy)
  617. elif c in [1,2]:
  618. dirp.setdefault(1,[])
  619. dirp[1].append(xyxy)
  620. dirf.setdefault(1,[])
  621. dirf[1].append(xyxy)
  622. elif c==3:
  623. dirp.setdefault(1,[])
  624. dirp[1].append(xyxy)
  625. elif c==4:
  626. dirf.setdefault(0,[])
  627. dirf[0].append(xyxy)
  628. if len(dirp.keys()) == 2:
  629. claimg = []
  630. clapoint = []
  631. for person in dirp[0]:
  632. for other in dirp[1]:
  633. iou, newxyxy = compute_IOU(person, other)
  634. if iou>0.1:
  635. print(newxyxy)
  636. imgtmp = im0[int(newxyxy[1]):int(newxyxy[3]),int(newxyxy[0]):int(newxyxy[2])]
  637. imgtmp = imgtmp[...,::-1]
  638. imgtmp = Image.fromarray(imgtmp)
  639. imgten1 = test(imgtmp)
  640. claimg.append(imgten1)
  641. clapoint.append((newxyxy))
  642. result = clapre(self.classifier_model,claimg,clapoint)
  643. #imgten = imgten1[None]
  644. #imgten = imgten.to(0)
  645. #result = modelcla(imgten)
  646. #result = F.softmax(result, dim=1)
  647. #cla = result.argmax(1)
  648. if result is not None:
  649. self.flag = True
  650. for res in result:
  651. print(res)
  652. annotator.box_label(res, None, color=(0,0,255))
  653. if len(dirp.keys()) == 2:
  654. claimg = []
  655. clapoint = []
  656. for person in dirp[0]:
  657. for other in dirp[1]:
  658. iou, newxyxy = compute_IOU(person, other)
  659. if iou>0.1:
  660. print(newxyxy)
  661. imgtmp = im0[int(newxyxy[1]):int(newxyxy[3]),int(newxyxy[0]):int(newxyxy[2])]
  662. imgtmp = imgtmp[...,::-1]
  663. imgtmp = Image.fromarray(imgtmp)
  664. imgten1 = test(imgtmp)
  665. claimg.append(imgten1)
  666. clapoint.append((newxyxy))
  667. result = clapre(self.classifier_model,claimg,clapoint)
  668. #imgten = imgten1[None]
  669. #imgten = imgten.to(0)
  670. #result = modelcla(imgten)
  671. #result = F.softmax(result, dim=1)
  672. #cla = result.argmax(1)
  673. if result is not None:
  674. self.flag = True
  675. for res in result:
  676. print(res)
  677. annotator.box_label(res, None, color=(0,0,255))
  678. return self.flag
  679. class Persontree:
  680. def __init__(self):
  681. self.flag = False
  682. self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
  683. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
  684. self.flag = False
  685. target_classes = [1, 2, 3]
  686. results = Results(annotator.result(),path=None,names=names,boxes=det)
  687. boxes = results.boxes
  688. person_boxes = []
  689. target_boxes = []
  690. cls4_boxes = []
  691. # 处理检测结果
  692. for i in range(len(boxes)):
  693. cls = int(boxes.cls[i].item())
  694. con = boxes.conf[i].item()
  695. if cls == 0 and con > 0.1: # 如果是 "person" 类别
  696. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  697. person_boxes.append([x1, y1, x2, y2])
  698. if cls in target_classes and con > 0.1: # 目标类别(bag, box, cart)
  699. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  700. target_boxes.append([x1, y1, x2, y2])
  701. if cls == 4 and con > 0.1: # 如果是 "cls 4" 类别
  702. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  703. cls4_boxes.append([x1, y1, x2, y2])
  704. # 如果检测到 "person" 类别和目标框,计算IoU
  705. if person_boxes and target_boxes:
  706. for i, person_box in enumerate(person_boxes):
  707. person_center_y = (person_box[1] + person_box[3]) / 2
  708. for j, target_box in enumerate(target_boxes):
  709. target_center_y = (target_box[1] + target_box[3]) / 2
  710. # 判断目标框的中心点是否在person框的下方
  711. if target_center_y + 20 > person_center_y: # 根据需要调整此阈值
  712. iou = calculate_iou(person_box, target_box)
  713. if iou > 0: # IoU大于0,进入新的判断
  714. # 创建一个包围person和target框的区域 本来思路是判断脚是否在这个大框框里面 但是这个不合理 应该判断脚是不是在这个交集里面,再检测脚和人与物交集有没有交集
  715. min_x = max(person_box[0], target_box[0])
  716. min_y = max(person_box[1], target_box[1])
  717. max_x = min(person_box[2], target_box[2])
  718. max_y = min(person_box[3], target_box[3])
  719. target_area = (min_x, min_y, max_x, max_y)
  720. # 检查是否有cls 4物体在这个区域内
  721. for cls4_box in cls4_boxes: #比较巧妙 提前存储这个变量 然后检测这个物体是不是在这里面
  722. # 判断cls 4框是否与这个区域有交集
  723. inter_x1 = max(cls4_box[0], target_area[0])
  724. inter_y1 = max(cls4_box[1], target_area[1])
  725. inter_x2 = min(cls4_box[2], target_area[2])
  726. inter_y2 = min(cls4_box[3], target_area[3])
  727. if inter_x1 < inter_x2 and inter_y1 < inter_y2:
  728. # 计算交集区域的面积
  729. intersection_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)
  730. # 计算 cls4_box 的面积
  731. cls4_area = (cls4_box[2] - cls4_box[0]) * (cls4_box[3] - cls4_box[1])
  732. # 计算交集区域占 cls4_box 面积的比例
  733. overlap_ratio = intersection_area / cls4_area
  734. if overlap_ratio > 0.5:
  735. self.flag = True
  736. return self.flag
  737. class Persontre:
  738. def __init__(self):
  739. self.flag = False
  740. self.classifier_model = torch.load('/home/h3c/yolo/persontrecls.pt')
  741. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1,im0=None):
  742. self.flag = False
  743. cls3 =3 #对cart单独一类
  744. cls4 = 4 # 新增加的类别编号(假设为 4)
  745. target_classes = [1, 2, 3]
  746. results = Results(annotator.result(),path=None,names=names,boxes=det)
  747. boxes = results.boxes
  748. person_boxes = [] # 人 车子 脚 以及 指定区域内的脚
  749. cls3_boxes = []
  750. cls4_boxes = []
  751. best_cls4_box = []
  752. # 处理检测结果
  753. for i in range(len(boxes)):
  754. cls = int(boxes.cls[i].item())
  755. con = boxes.conf[i].item()
  756. if cls == 0 and con > 0.1: # 如果是 "person" 类别 先把对应类别添加上去 先把每一个识别物体输入上去
  757. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  758. person_boxes.append([x1, y1, x2, y2])
  759. if cls == cls3 and con > 0.1: # 目标类别 cart
  760. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  761. cls3_boxes.append([x1, y1, x2, y2])
  762. if cls == cls4 and con > 0.1: # 如果是 "cls 4" 类别
  763. x1, y1, x2, y2 = boxes.xyxy[i].tolist()
  764. cls4_boxes.append([x1, y1, x2, y2])
  765. # 如果检测到 "person" 类别和目标框,计算IoU
  766. if person_boxes and cls3_boxes: # 先查看这俩个类别有没有
  767. for i, person_box in enumerate(person_boxes):
  768. for j, cls3_box in enumerate(cls3_boxes):
  769. # 判断目标框的中心点是否在person框的下方
  770. iou = calculate_iou(person_box, cls3_box)
  771. # 踩的逻辑 一个是要求车子和人有交并比 其次判断脚是不是在这个交并比内 并且比重不能太低
  772. if iou > 0.2: # 用来判断坐 如果iou足够高 就视为是坐
  773. # 加载图像并绘制标注
  774. # 看看这个值大概有多少 好衡量一下
  775. #print(f"这个iou大于0.2的 这是第{frame_idx},iou是{iou}") # 写入介绍
  776. annotator.box_label(person_box, None, color=(0, 0, 255))
  777. annotator.box_label(cls3_box, None, color=(0, 0, 255))
  778. self.flag = True
  779. #print("这是坐",f"{saved_image_path}")
  780. elif iou > 0 : # IoU大于0,进入新的判断 代表不是坐
  781. # 创建一个包围person和target框的区域 本来思路是判断脚是否在这个大框框里面 但是这个不合理 应该判断脚是不是在这个交集里面,再检测脚和人与物交集有没有交集
  782. overlap_ratio, inter_xy, best_cls4_box1 = check_cls4_overlap(person_box, cls3_box,cls4_boxes)
  783. best_cls4_box.extend(best_cls4_box1) #拿到这四个点的坐标
  784. inter_x1, inter_y1 = inter_xy
  785. # 如果占比大于某个阈值,可以执行进一步的操作
  786. if overlap_ratio > 0.2:
  787. annotator.box_label(person_box, None, color=(0, 0, 255))
  788. annotator.box_label(cls3_box, None, color=(0, 0, 255))
  789. annotator.box_label(best_cls4_box, None, color=(0, 0, 255))
  790. self.flag = True
  791. class Danager:
  792. def __init__(self):
  793. self.flag = False
  794. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  795. self.flag = False
  796. for *xyxy, conf, cls in reversed(det):
  797. c = int(cls)
  798. labelname = names[c]
  799. if labelname in rname:
  800. if fence == 1:
  801. pointa = strtolstl(point)
  802. for poi in pointa:
  803. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 2),
  804. int(xyxy[1].cpu().item() + (xyxy[3].cpu().item() - xyxy[1].cpu().item()) / 2))
  805. #p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  806. #xyxy[3].cpu().item())
  807. pt = [p1]
  808. inflag = mat.Path(poi).contains_points(pt)
  809. if inflag.any():
  810. if persondet is None:
  811. self.flag = True
  812. # c = int(cls) # integer class
  813. # label = f'{self.names[c]} {conf:.2f}'
  814. label = None
  815. annotator.box_label(xyxy, None, color=(0, 0, 255))
  816. else:
  817. for person in persondet:
  818. personinflag = mat.Path(person).contains_points(pt)
  819. if personinflag.any():
  820. annotator.box_label(xyxy, None, color=(0, 0, 255))
  821. self.flag = True
  822. else:
  823. if persondet is None:
  824. self.flag = True
  825. # c = int(cls) # integer class
  826. # label = f'{self.names[c]} {conf:.2f}'
  827. label = None
  828. annotator.box_label(xyxy, None, color=(0, 0, 255))
  829. else:
  830. for person in persondet:
  831. p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  832. xyxy[3].cpu().item())
  833. p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  834. xyxy[3].cpu().item())
  835. pt = [p1, p2]
  836. personinflag = mat.Path(person).contains_points(pt)
  837. if personinflag.any():
  838. annotator.box_label(xyxy, None, color=(0, 0, 255))
  839. self.flag = True
  840. return self.flag
  841. class CarHelmetBelt:
  842. def __init__(self):
  843. self.flag = False
  844. def selectNoBeltPerson(self, person_objs, belt_objs):
  845. objs = []
  846. polygon_person = [Polygon(
  847. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  848. polygon_belt = [Polygon(
  849. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in belt_objs]
  850. for person_obj, person in zip(person_objs, polygon_person):
  851. with_belt = False
  852. for belt in polygon_belt:
  853. if person.intersection(belt).area / belt.area > 0.5:
  854. with_belt = True
  855. break
  856. if not with_belt:
  857. objs.append(person_obj)
  858. return objs
  859. def selectWithPersonHead(self, person_objs, head_objs):
  860. objs = []
  861. polygon_person = [Polygon(
  862. [(left, top), (right, top), (right, top + (bottom - top)/2), (left, top + (bottom - top)/2)]) for left, top, right, bottom, _, _ in person_objs]
  863. polygon_head = [Polygon(
  864. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
  865. for head_obj, head in zip(head_objs, polygon_head):
  866. with_person = False
  867. for person in polygon_person:
  868. print('head')
  869. if person.intersection(head).area / head.area > 0.5:
  870. with_person = True
  871. break
  872. if with_person:
  873. objs.append(head_obj)
  874. return objs
  875. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  876. self.flag = False
  877. results = Results(annotator.result(),path=None,names=names,boxes=det)
  878. person_objs = []
  879. head_objs = []
  880. belt_objs = []
  881. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  882. for result in results:
  883. boxes = result.boxes
  884. for box in boxes:
  885. #print(box.conf.cpu())
  886. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  887. polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  888. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  889. if sum(intersection_areas) == 0:
  890. continue
  891. intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  892. if intersection_areas_ratio[-1] < 0.9:
  893. continue
  894. conf = box.conf.cpu().numpy().tolist()[0]
  895. cls = box.cls.cpu().numpy().tolist()[0]
  896. if cls == 0:
  897. person_objs.append([left, top, right, bottom, conf, names[cls]])
  898. elif cls == 1:
  899. head_objs.append([left, top, right, bottom, conf, names[cls]])
  900. elif cls == 3:
  901. belt_objs.append([left, top, right, bottom, conf, names[cls]])
  902. #print(head_objs)
  903. #print(person_objs)
  904. illegal_objs = self.selectNoBeltPerson(person_objs, belt_objs) + self.selectWithPersonHead(person_objs, head_objs)
  905. if len(illegal_objs)>0:
  906. for obj in illegal_objs:
  907. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  908. self.flag = True
  909. return self.flag
  910. class newUniformi1:
  911. def __init__(self):
  912. self.flag = False
  913. def selectNoUniformPerson(self, person_objs, uniform_objs):
  914. objs = []
  915. print(person_objs)
  916. print(uniform_objs)
  917. polygon_person = [Polygon(
  918. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  919. polygon_uniform = [Polygon(
  920. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
  921. for person_obj, person in zip(person_objs, polygon_person):
  922. with_uniform = False
  923. for uniform in polygon_uniform:
  924. if person.intersection(uniform).area / uniform.area > 0.3:
  925. with_uniform = True
  926. break
  927. if not with_uniform:
  928. print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
  929. objs.append(person_obj)
  930. return objs
  931. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  932. self.flag = False
  933. results = Results(annotator.result(),path=None,names=names,boxes=det)
  934. print(results.boxes)
  935. person_objs = []
  936. uniform_objs = []
  937. #belt_objs = []
  938. if len(point)>1:
  939. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  940. else:
  941. self.polygon_areas = None
  942. if persondet is not None:
  943. if self.polygon_areas is not None:
  944. for left, top, right,top,right, bottom,left,bottom in persondet:
  945. polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  946. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in
  947. self.polygon_areas]
  948. if sum(intersection_areas) == 0:
  949. continue
  950. intersection_areas_ratio = sorted(
  951. [intersection_area / polygon_box.area for intersection_area in intersection_areas])
  952. print(f'inter = {intersection_areas_ratio}')
  953. if intersection_areas_ratio[-1] >= 0.3:
  954. print("person in check space!!!")
  955. width = right - left
  956. height = bottom - top
  957. print(f'{left}, {top}, {right},{top},{right}, {bottom},{left},{bottom}')
  958. print(f'hw = {width* height}')
  959. if width * height > 10000:
  960. person_objs.append([left, top, right, bottom, 0.25, 'person'])
  961. for result in results:
  962. boxes = result.boxes
  963. for box in boxes:
  964. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  965. # if self.polygon_areas is not None :
  966. # if persondet is None and box.cls.cpu().numpy().tolist()[0] == 4:
  967. # polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  968. #
  969. # intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  970. # if sum(intersection_areas) == 0:
  971. # continue
  972. #
  973. # intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  974. # print(f'inter = {intersection_areas_ratio}')
  975. # if intersection_areas_ratio[-1] < 0.3:
  976. # continue
  977. conf = box.conf.cpu().numpy().tolist()[0]
  978. cls = box.cls.cpu().numpy().tolist()[0]
  979. # if persondet is not None:
  980. # if cls == 4 and conf >=0.7:
  981. # width = right - left
  982. # height = bottom - top
  983. # if width * height >10000:
  984. # person_objs.append([left, top, right, bottom, conf, names[cls]])
  985. if cls in [1,2]:
  986. #width = right - left
  987. #height = bottom - top
  988. #if width * height >4096:
  989. uniform_objs.append([left, top, right, bottom, conf, names[cls]])
  990. print(f'personobjs = {person_objs}')
  991. print(f'uniformobjs = {uniform_objs}')
  992. illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
  993. if len(illegal_objs)>0:
  994. for obj in illegal_objs:
  995. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  996. self.flag = True
  997. return self.flag
  998. class newHelmet:
  999. def __init__(self):
  1000. self.flag = False
  1001. def selectNoHelmetPerson(self, person_objs, head_objs):
  1002. objs = []
  1003. polygon_person = [Polygon(
  1004. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  1005. polygon_head = [Polygon(
  1006. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
  1007. for person_obj, person in zip(person_objs, polygon_person):
  1008. with_head = False
  1009. for head in polygon_head:
  1010. print('head')
  1011. if person.intersection(head).area / head.area > 0.3:
  1012. with_head = True
  1013. break
  1014. if with_head:
  1015. objs.append(person_obj)
  1016. return objs
  1017. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  1018. self.flag = False
  1019. results = Results(annotator.result(),path=None,names=names,boxes=det)
  1020. person_objs = []
  1021. head_objs = []
  1022. helmet_objs = []
  1023. headtmp = []
  1024. #belt_objs = []
  1025. if len(point)>1:
  1026. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  1027. else:
  1028. self.polygon_areas = None
  1029. for result in results:
  1030. boxes = result.boxes
  1031. for box in boxes:
  1032. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  1033. if self.polygon_areas is not None:
  1034. polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  1035. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  1036. if sum(intersection_areas) == 0:
  1037. continue
  1038. intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  1039. if intersection_areas_ratio[-1] < 0.9:
  1040. continue
  1041. conf = box.conf.cpu().numpy().tolist()[0]
  1042. cls = box.cls.cpu().numpy().tolist()[0]
  1043. #print(f'{conf} {cls}')
  1044. #print(cls in [5,6,7,8,9,10])
  1045. if cls == 4 and conf >=0.7:
  1046. width = right - left
  1047. height = bottom - top
  1048. if width * height >4096:
  1049. person_objs.append([left, top, right, bottom, conf, names[cls]])
  1050. elif cls == 0 and conf >= 0.5:
  1051. #width = right - left
  1052. #height = bottom - top
  1053. #if width * height >4096:
  1054. print('------')
  1055. headtmp.append([left, top, right, bottom, conf, names[cls]])
  1056. elif cls in [5,6,7,8,9,10]:
  1057. helmet_objs.append([(left, top), (right, top), (right, bottom), (left, bottom)])
  1058. print(f'headtmp= {headtmp}')
  1059. print(f'helmet_objs = {helmet_objs}')
  1060. for left, top, right, bottom, conf, name in headtmp:
  1061. flag = False
  1062. pt = [(int((left+right)/2),int((top+bottom)/2))]
  1063. for helmet in helmet_objs:
  1064. pflag = mat.Path(helmet).contains_points(pt)
  1065. if pflag.any():
  1066. flag = True
  1067. break
  1068. if not flag:
  1069. head_objs.append([left, top, right, bottom, conf, name])
  1070. illegal_objs = self.selectNoHelmetPerson(person_objs, head_objs)
  1071. if len(illegal_objs)>0:
  1072. for obj in illegal_objs:
  1073. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  1074. self.flag = True
  1075. return self.flag
  1076. class newHelmetn:
  1077. def __init__(self):
  1078. self.flag = False
  1079. def selectNoHelmetPerson(self, person_objs, head_objs):
  1080. objs = []
  1081. polygon_person = [Polygon(
  1082. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  1083. polygon_head = [Polygon(
  1084. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in head_objs]
  1085. for person_obj, person in zip(person_objs, polygon_person):
  1086. with_head = False
  1087. for head in polygon_head:
  1088. if person.intersection(head).area / head.area > 0.3:
  1089. with_head = True
  1090. break
  1091. if with_head:
  1092. objs.append(person_obj)
  1093. return objs
  1094. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  1095. self.flag = False
  1096. results = Results(annotator.result(),path=None,names=names,boxes=det)
  1097. person_objs = []
  1098. head_objs = []
  1099. #belt_objs = []
  1100. if len(point)>1:
  1101. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  1102. else:
  1103. self.polygon_areas = None
  1104. for result in results:
  1105. boxes = result.boxes
  1106. for box in boxes:
  1107. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  1108. if self.polygon_areas is not None:
  1109. polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  1110. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  1111. if sum(intersection_areas) == 0:
  1112. continue
  1113. intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  1114. if intersection_areas_ratio[-1] < 0.9:
  1115. continue
  1116. conf = box.conf.cpu().numpy().tolist()[0]
  1117. cls = box.cls.cpu().numpy().tolist()[0]
  1118. if cls == 4:
  1119. width = right - left
  1120. height = bottom - top
  1121. if width * height >4096:
  1122. person_objs.append([left, top, right, bottom, conf, names[cls]])
  1123. elif cls == 0:
  1124. #width = right - left
  1125. #height = bottom - top
  1126. #if width * height >4096:
  1127. head_objs.append([left, top, right, bottom, conf, names[cls]])
  1128. illegal_objs = self.selectNoHelmetPerson(person_objs, head_objs)
  1129. if len(illegal_objs)>0:
  1130. for obj in illegal_objs:
  1131. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  1132. self.flag = True
  1133. return self.flag
  1134. class newUniformt:
  1135. def __init__(self):
  1136. self.flag = False
  1137. def selectNoUniformPerson(self, person_objs, uniform_objs):
  1138. objs = []
  1139. print(person_objs)
  1140. print(uniform_objs)
  1141. polygon_person = [Polygon(
  1142. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  1143. polygon_uniform = [Polygon(
  1144. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
  1145. for person_obj, person in zip(person_objs, polygon_person):
  1146. with_uniform = False
  1147. for uniform in polygon_uniform:
  1148. if person.intersection(uniform).area / uniform.area > 0.3:
  1149. with_uniform = True
  1150. break
  1151. if not with_uniform:
  1152. print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
  1153. objs.append(person_obj)
  1154. return objs
  1155. def selectHeadPerson(self, person_objs, head_objs):
  1156. objs = []
  1157. print(person_objs)
  1158. print(head_objs)
  1159. #personlist = []
  1160. polygon_person = [Polygon(
  1161. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  1162. polygon_head = [Polygon(
  1163. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
  1164. for person_obj, person in zip(person_objs, polygon_person):
  1165. #with_uniform = False
  1166. for head in polygon_head:
  1167. if person.intersection(head).area / head.area > 0.3:
  1168. #with_uniform = True
  1169. #break
  1170. #if not with_uniform:
  1171. # print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
  1172. objs.append(person_obj)
  1173. break
  1174. return objs
  1175. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  1176. self.flag = False
  1177. results = Results(annotator.result(),path=None,names=names,boxes=det)
  1178. print(results.boxes)
  1179. person_objs = []
  1180. uniform_objs = []
  1181. head_objs = []
  1182. #belt_objs = []
  1183. if len(point)>1:
  1184. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  1185. else:
  1186. self.polygon_areas = None
  1187. for result in results:
  1188. boxes = result.boxes
  1189. for box in boxes:
  1190. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  1191. if self.polygon_areas is not None:
  1192. polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  1193. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  1194. if sum(intersection_areas) == 0:
  1195. continue
  1196. intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  1197. if intersection_areas_ratio[-1] < 0.9:
  1198. continue
  1199. conf = box.conf.cpu().numpy().tolist()[0]
  1200. cls = box.cls.cpu().numpy().tolist()[0]
  1201. if cls == 4:
  1202. width = right - left
  1203. height = bottom - top
  1204. if width * height >4096:
  1205. person_objs.append([left, top, right, bottom, conf, names[cls]])
  1206. elif cls in [1,2]:
  1207. #width = right - left
  1208. #height = bottom - top
  1209. #if width * height >4096:
  1210. uniform_objs.append([left, top, right, bottom, conf, names[cls]])
  1211. elif cls != 3:
  1212. head_objs.append([left, top, right, bottom, conf, names[cls]])
  1213. person_objs = self.selectNoUniformPerson(person_objs, head_objs)
  1214. illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
  1215. if len(illegal_objs)>0:
  1216. for obj in illegal_objs:
  1217. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  1218. self.flag = True
  1219. return self.flag
  1220. class newUniform:
  1221. def __init__(self):
  1222. self.flag = False
  1223. def selectNoUniformPerson(self, person_objs, uniform_objs):
  1224. objs = []
  1225. print(person_objs)
  1226. print(uniform_objs)
  1227. polygon_person = [Polygon(
  1228. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in person_objs]
  1229. polygon_uniform = [Polygon(
  1230. [(left, top), (right, top), (right, bottom), (left, bottom)]) for left, top, right, bottom, _, _ in uniform_objs]
  1231. for person_obj, person in zip(person_objs, polygon_person):
  1232. with_uniform = False
  1233. for uniform in polygon_uniform:
  1234. if person.intersection(uniform).area / uniform.area > 0.3:
  1235. with_uniform = True
  1236. break
  1237. if not with_uniform:
  1238. print(f'illperson_obj {person_obj} illpolygon_uniform {polygon_uniform}')
  1239. objs.append(person_obj)
  1240. return objs
  1241. def getflag(self, det, persondet,annotator, fence=0, point=None, names=None, rname=None,num=1):
  1242. self.flag = False
  1243. results = Results(annotator.result(),path=None,names=names,boxes=det)
  1244. print(results.boxes)
  1245. person_objs = []
  1246. uniform_objs = []
  1247. print(f'persondet = {persondet}')
  1248. #belt_objs = []
  1249. if len(point)>1:
  1250. self.polygon_areas = [Polygon(strtolstl(point)[0])]
  1251. print(self.polygon_areas)
  1252. else:
  1253. self.polygon_areas = None
  1254. tmppersondet = []
  1255. if self.polygon_areas is not None:
  1256. for person in persondet:
  1257. polygon_box = Polygon([(person[0], person[1]), (person[2], person[3]), (person[4], person[5]), (person[6], person[7])])
  1258. intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  1259. if sum(intersection_areas) == 0:
  1260. continue
  1261. intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  1262. #print(intersection_areas_ratio)
  1263. if intersection_areas_ratio[-1] < 0.9:
  1264. continue
  1265. tmppersondet.append(person)
  1266. persondet = tmppersondet
  1267. print(f'tmppersondet = {tmppersondet}')
  1268. #persondet = tmppersondet
  1269. for result in results:
  1270. boxes = result.boxes
  1271. for box in boxes:
  1272. left, top, right, bottom = box.xyxy.cpu().numpy().tolist()[0]
  1273. conf = box.conf.cpu().numpy().tolist()[0]
  1274. cls = box.cls.cpu().numpy().tolist()[0]
  1275. #if self.polygon_areas is not None and cls == 4:
  1276. # polygon_box = Polygon([(left, top), (right, top), (right, bottom), (left, bottom)])
  1277. # intersection_areas = [polygon_area.intersection(polygon_box).area for polygon_area in self.polygon_areas ]
  1278. # if sum(intersection_areas) == 0:
  1279. # continue
  1280. # intersection_areas_ratio = sorted([intersection_area / polygon_box.area for intersection_area in intersection_areas])
  1281. # if intersection_areas_ratio[-1] < 0.9:
  1282. # continue
  1283. #conf = box.conf.cpu().numpy().tolist()[0]
  1284. #cls = box.cls.cpu().numpy().tolist()[0]
  1285. print(conf)
  1286. print(cls)
  1287. if cls == 4 and conf >=0.7:
  1288. width = right - left
  1289. height = bottom - top
  1290. print(width*height)
  1291. if width * height >10000:
  1292. for person in persondet:
  1293. #p1 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3),
  1294. #xyxy[3].cpu().item())
  1295. #p2 = (int(xyxy[0].cpu().item() + (xyxy[2].cpu().item() - xyxy[0].cpu().item()) / 3 * 2),
  1296. # xyxy[3].cpu().item())
  1297. personcenterx = int((person[0]+person[2])/2)
  1298. personcentery = int((person[1]+person[7])/2)
  1299. p1 = (personcenterx,personcentery)
  1300. print(p1)
  1301. pt = [p1]
  1302. print(f'p1 = {p1}')
  1303. print(f'person = {person}')
  1304. personinflag = mat.Path([(left, top), (right, top), (right, bottom), (left, bottom)]).contains_points(pt)
  1305. if personinflag.any():
  1306. person_objs.append([left, top, right, bottom, conf, names[cls]])
  1307. elif cls in [1,2]:
  1308. #width = right - left
  1309. #height = bottom - top
  1310. #if width * height >4096:
  1311. uniform_objs.append([left, top, right, bottom, conf, names[cls]])
  1312. illegal_objs = self.selectNoUniformPerson(person_objs, uniform_objs)
  1313. if len(illegal_objs)>0:
  1314. for obj in illegal_objs:
  1315. annotator.box_label(obj[:4], None, color=(0, 0, 255))
  1316. self.flag = True
  1317. return self.flag