# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
                                                     img.jpg                         # image
                                                     vid.mp4                         # video
                                                     screen                          # screenshot
                                                     path/                           # directory
                                                     list.txt                        # list of images
                                                     list.streams                    # list of streams
                                                     'path/*.jpg'                    # glob
                                                     'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python detect.py --weights yolov5s.pt                 # PyTorch
                                 yolov5s.torchscript        # TorchScript
                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                 yolov5s_openvino_model     # OpenVINO
                                 yolov5s.engine             # TensorRT
                                 yolov5s.mlmodel            # CoreML (macOS-only)
                                 yolov5s_saved_model        # TensorFlow SavedModel
                                 yolov5s.pb                 # TensorFlow GraphDef
                                 yolov5s.tflite             # TensorFlow Lite
                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                                 yolov5s_paddle_model       # PaddlePaddle
"""
import matplotlib.path as mat
import requests
import argparse
import os
import platform
import sqlite3
import sys
import threading
import time
from pathlib import Path
import signal
import torch
from concurrent.futures import ThreadPoolExecutor
from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,Manager,Value
from multiprocessing import Queue
from multiprocessing import set_start_method
import multiprocessing
import multiprocessing as mp
import numpy as np
import platform
import pathlib
from collections import defaultdict, deque
#import websockets
import asyncio
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
import math
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages,LoadStreams, LoadStreamsSQLNEWN,LoadStreamsSQL,LoadStreamsSQLNRERT,LoadStreamsVEight,LoadStreamsSQLTN
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh,strtolst,strtolstl,apply_classifier1,task)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
#from testpool import func1,TestA
from ultralytics import YOLO
from person_jump_check import personJump
# def my_handler(signum, frame):
#     exit(0)
#url = "http://36.7.84.146:18802/ai-service/open/api/operate/upload"
plt = platform.system()
if plt != 'Windows':
  pathlib.WindowsPath = pathlib.PosixPath
urlhead = "http://172.19.152.231"
url = f"{urlhead}/open/api/operate/upload"
urlele = f"{urlhead}/open/api/operate/fence"
urlperson = f"{urlhead}/open/api/operate/getPersonLimitNum"
urlt = f"{urlhead}/open/api/operate/taskList"
urla = f"{urlhead}/open/api/operate/algorithmList"
weburl = f"ws://36.7.84.146:28801/websocket/device"
personcountdir = {}
algdir = {'0':'helmet','8':'danager','10':'uniform','14':'smoke','16':'fire','21':'cross','25':'fall','29':'occupancy','30':'liquid','31':'pressure','32':'sleep','33':'conveyor','34':'personcount','35':'gloves','36':'sit','37':'other','38':'duty','98':'face','51':'run','64':'jump'}
modellabeldir = {'0':'head','8':'person','10':'other','14':'smoke','16':'fire','21':'cross','25':'fall','29':'car','30':'liquid','31':'pressure','32':'sleep','33':'conveyor','34':'personcount','35':'gloves','36':'sit','37':'other','38':'person','98':'face','51':'person','64':'person'}
modelalgdir = {'helmet': '0','danager': '8','uniform': '10','smoke': '14','fire': '16','cross': '21','fall': '25','occupancy': '29','liquid': '30','pressure': '31','sleep': '32','conveyor': '33','personcount': '34','gloves': '35','sit': '36','other': '37','duty': '38','face': '98','run': '51','jump':'64'}
algmodel = {}
for key,value in algdir.items():
    algmodel[value] = key

def map_to_ellipse(position):
    x, y = position
    center_x = 640
    center_y = 360
    a = 640
    b = 360

    x_norm = x / 1280
    y_norm = y / 720

    d_norm = math.sqrt((x_norm - 0.5) ** 2 + (y_norm - 0.5) ** 2)
    theta_norm = math.atan2(y_norm - 0.5, x_norm - 0.5)
    f = d_norm
    a_new = a * f
    b_new = b * f

    bias_x = center_x + a_new * math.cos(theta_norm)
    bias_y = center_y + b_new * math.sin(theta_norm)

    return np.array([bias_x, bias_y])

class YoloOpt:
    def __init__(self, weights=ROOT / 'yolov5s.pt',source=ROOT / 'data/images',data=ROOT / 'data/coco128.yaml',
                 imgsz=(640,640),
                 conf_thres=0.80,
                 iou_thres=0.45,
                 max_det=1000,
                 device='',
                 view_img=False,
                 save_txt=False,
                 save_conf=False,
                 save_crop=False,
                 nosave=True,
                 classes=None,
                 agnostic_nms=False,
                 augment=False,
                 visualize=False,
                 update=False,
                 project=ROOT / 'runs/detect',
                 name='exp',
                 exist_ok=False,
                 line_thickness=1,
                 hide_labels=False,
                 hide_conf=False,
                 half=False,
                 dnn=False,
                 vid_stride=10,
                 classify=False):

        self.weights = weights  # 权重文件地址
        self.source = source  # 待识别的图像
        self.data = data
        if imgsz is None:
            self.imgsz = (640, 640)
        self.imgsz = imgsz  # 输入图片的大小,默认 (640,640)
        self.conf_thres = conf_thres  # object置信度阈值 默认0.25  用在nms中
        self.iou_thres = iou_thres  # 做nms的iou阈值 默认0.45   用在nms中
        self.device = device  # 执行代码的设备,由于项目只能用 CPU,这里只封装了 CPU 的方法
        self.view_img = view_img  # 是否展示预测之后的图片或视频 默认False
        self.classes = classes  # 只保留一部分的类别,默认是全部保留
        self.agnostic_nms = agnostic_nms  # 进行NMS去除不同类别之间的框, 默认False
        self.augment = augment  # augmented inference TTA测试时增强/多尺度预测,可以提分
        self.update = update  # 如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False
        self.exist_ok = exist_ok  # 如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False
        self.project = project  # 保存测试日志的参数,本程序没有用到
        self.name = name  # 每次实验的名称,本程序也没有用到
        self.max_det = max_det
        self.save_txt = save_txt
        self.save_conf= save_conf
        self.save_crop= save_crop
        self.nosave = nosave
        self.visualize = visualize
        self.line_thickness = line_thickness
        self.hide_labels = hide_labels
        self.hide_conf = hide_conf
        self.half = half
        self.dnn = dnn
        self.vid_stride = vid_stride
        self.classify = classify
class Detect:
    def __init__(self, weights = ROOT / 'yolov5s.pt' , imgsz=(640,640),source="changshusql1103.db",classify=False,conf_thres=0.80,device='',channelsl=''):
        print(f'detectweights = {weights}')
        self.opt = YoloOpt(weights=weights, imgsz=imgsz,source=source,classify=classify,conf_thres=conf_thres,device=device)
        self.source = str(self.opt.source)
        self.save_img = not self.opt.nosave and not source.endswith('.txt')  # save inference images
        is_file = Path(self.source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
        is_url = self.source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
        self.webcam = True
        screenshot = self.source.lower().startswith('screen')
        if is_url and is_file:
            self.source = check_file(self.source)  # download
        self.save_dir = increment_path(Path(self.opt.project) / self.opt.name, exist_ok=self.opt.exist_ok)  # increment run
        #self.save_dir = self.save_dir / Path(self.opt.weights).stem
        #self.save_dir.mkdir(parents=True, exist_ok=True)
        (self.save_dir / 'labels' if self.opt.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        #self.imgsz = check_img_size(self.opt.imgsz, s=self.stride)

        # self.readchannel = self.readpoint()
        #print(self.imgsz)
        self.updatetime = time.time()
        #self.filetime = os.path.getmtime(self.opt.weights)
        bs = 1  # batch_size
        if self.webcam:
            #self.view_img = check_imshow(warn=True)
            self.view_img = False
            # dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
            tt= 0
            numworks = 1
            self.dataset = LoadStreamsSQLTN(channelsl, source, img_size=640,
                                        auto=True, vid_stride=1, tt=tt, numworks=numworks)
            # bs = len(dataset)
        elif screenshot:
            dataset = LoadScreenshots(self.source, img_size=self.imgsz, stride=self.stride, auto=self.pt)
        else:
            self.dataset = LoadImages(self.source, img_size=self.imgsz, stride=self.stride, auto=self.pt, vid_stride=self.opt.vid_stride)
        self.speed_threshold = 40
        self.high_velocity_count_threshold = 6
        # t1 = threading.Thread(target=self.load,daemon=True)
        # t1.start()
    @smart_inference_mode()
    def infer(self,weights,classify,conf_thres,device,runmodel):
        device = select_device(device)
        print("loadmodel device{device}")
        #region_points = [(820, 200), (1600, 200), (1600, 530), (820, 530)]
        #region_points = [[259, 200], [2258, 200], [2258, 943], [259, 943]]
        #region_points = [[374,1224],[380,1237],[426,1237],[435,1237],[479,1230],[527,1201],[552,1187],[575,1166],[583,1155],[585,1136],[583,1126],[558,1124],[485,1178],[374,1210]]
        region_points = [(214, 519),(235, 512),(251, 503),(269, 496),(283, 486),(296, 482),(302, 493),(296, 507),(283, 517),(275, 526),(247, 533),(227, 538),(209, 538),(207, 529),(203, 521)]
        counter = personJump(
            # show_in = False,
            # show_out = False,
            show=False,
            region=region_points,
            model=weights,
            classes=[0],
            conf=0.4,
        )
        # stride, names, pt = model.stride, model.names, model.pt
        if classify:
            classifier_model = torch.load(f"{Path(weights).stem}cls.pt")
            classifier_model = classifier_model.to(device)
            classifier_model.eval()
            print('classify--------------------------------------------------------------------')
        #imgsz = check_img_size(self.opt.imgsz, s=stride)
        #model.warmup(imgsz=(1, 3, *imgsz))
        readchannel,dirmodel = self.readpoint(weights)
        #print(imgsz)
        updatetime = time.time()
        filetime = os.path.getmtime(weights)
        #selfreadpoint();
        pretime = time.time()
        seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
        #
        # print ("数据库打开成功")
        #async with websockets.connect(uri) as websocket:
        # for key in dirmodel.keys():
        #     dirmodel[key]['websoc'] = await websockets.connect(dirmodel[key]['web'])
        for path, im, im0s, vid_cap, s, videotime,channels in self.dataset:
            hour = time.localtime(time.time()).tm_hour
            if hour not in range(7,18):
                time.sleep(30)
                continue
            i = 0
            ima = im0s[i].copy()
            imc = ima.copy()
            flag = False
            #print('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa')
            #if len(queue) == 0:
                # print('queuezero')
            #    time.sleep(0.01)
            #print(123)
            im0 = counter.count(ima)
            #print(456)
            if counter.in_count > 0:
                flag = True
                counter.in_count = 0
            #print(f'timee = {time.time()-timee}')

            #flag = True
            if flag:
                #if self.dirmodel[path[i]]['imgtime'] != videotime[i]:
                dirmodel[channels[i]]['detframe'].pop(0)
                dirmodel[channels[i]]['detframe'].append(1)
                dirmodel[channels[i]]['preim'] = im0
                dirmodel[channels[i]]['oripreim'] = imc
                dirmodel[channels[i]]['posttime'] = videotime[i]
                print(dirmodel[channels[i]]['detframe'])
                #self.dirmodel[channels[i]]['imgtime'] = videotime[i]
            else:
                #print(f'deti= {i}')
                #print(detframe[i])
                #if self.dirmodel[channels[i]]['imgtime'] != videotime[i]:
                dirmodel[channels[i]]['detframe'].pop(0)
                dirmodel[channels[i]]['detframe'].append(0)
                print(dirmodel[channels[i]]['detframe'])
                #self.dirmodel[channels[i]]['imgtime'] = videotime[i]
                #print(detframe[i])
            # Stream results
            #im0 = annotator.result()
            #print(f'i = {i}')
            #print(channels[i])
            #print(postpretime[i])
            #print(detframe[i])
            if not dirmodel[channels[i]]['detflag'] and dirmodel[channels[i]]['detframe'].count(1)>=1:
                dirmodel[channels[i]]['detflag'] = True
                dirmodel[channels[i]]['detpretime'] = time.time()
            elif dirmodel[channels[i]]['detframe'].count(1)==0 :
                dirmodel[channels[i]]['detflag'] = False
                dirmodel[channels[i]]['detpretime'] = float('inf')
            # Stream results
            #im0 = annotator.result()

            if time.time() - dirmodel[channels[i]]['postpretime'] >30 and time.time() - dirmodel[channels[i]]['detpretime'] > dirmodel[channels[i]]['durtime']  and dirmodel[channels[i]]['detflag']:
            #print()
            #if time.time() - self.dirmodel[channels[i]]['postpretime'] >30 and self.dirmodel[channels[i]]['detflag']:
                #print(time.time() - self.dirmodel[channels[i]]['detpretime'])
                #print(self.dirmodel[channels[i]]['detflag'])
                #print(f'{Path(self.opt.weights).stem}post----{time.strftime("%Y-%m-%d %H:%M:%S", time.time()}')
                #time.sleep(30)
             #print(time.time() - postpretime[i])
                #print('111111111111111111111111111111111111111111111111')
                #print(dirmodel[channels[i]]['preim'].shape)
                success, encoded_image = cv2.imencode('.jpg', dirmodel[channels[i]]['preim'])
                content = encoded_image.tobytes()
                successori, encoded_imageori = cv2.imencode('.jpg', dirmodel[channels[i]]['oripreim'])
                contentori = encoded_imageori.tobytes()
                filename = f'0_{int(time.time())}.jpg'
                filenameori = f'0_{int(time.time())}.jpg'
                #print(f'str(p) {p.name}')
                print(channels[i])
                payload = {'channel': dirmodel[channels[i]]['channel'],
                                   'classIndex': dirmodel[channels[i]]['classindex'],
                                   'ip': dirmodel[channels[i]]['algip'],
                                   'videoTime': time.strftime('%Y-%m-%d %H:%M:%S', dirmodel[channels[i]]['posttime']),
                                   'videoUrl': channels[i]}

                fourcc = cv2.VideoWriter_fourcc(*'MP4V')
                fps = 6
                height,width,_ = dirmodel[channels[i]]['preim'].shape
                year=time.strftime('%Y',time.localtime(time.time()))
                month=time.strftime('%m',time.localtime(time.time()))
                day=time.strftime('%d',time.localtime(time.time()))
                vidsavefold = f'/mnt/yolo/videos/{Path(weights).stem}/{year}/{month}/{day}'
                vidsaveflod = Path(vidsavefold)
                vidsaveflod.mkdir(parents=True, exist_ok=True)
                timesave = time.strftime('%Y-%m-%d-%H:%M:%S', dirmodel[channels[i]]['posttime'])
                #out = cv2.VideoWriter(f'{vidsaveflod}/{timesave}.mp4', fourcc, fps, (width, height))
                #for imgframe in self.dirmodel[channels[i]]['framelist']:
                    #success, encoded_image = cv2.imencode('.jpg', self.dirmodel[channels[i]]['preim'])
                    #content = encoded_image.tobytes()
                #    out.write(imgframe)
                #out.release()
                files = [
                            ('file', (filename, content, 'image/jpeg')),
                            ('oldFile',(filenameori, contentori, 'image/jpeg')),
                            #('videoFile',open(f'{vidsaveflod}/{timesave}.mp4','rb'))
                        ]

                print(f'{Path(weights).stem}post----{time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))}')
                
                try:
                #    if self.dirmodel[channels[i]]['postvidpretime'] != self.dirmodel[channels[i]]['posttime'] and not self.dirmodel[channels[i]]['postvideo']:
                    resulttext = requests.post(url, data=payload, files=files)
                #        self.dirmodel[channels[i]]['postvidpretime'] = self.dirmodel[channels[i]]['posttime']
                #        self.dirmodel[channels[i]]['postid'] = resulttext.json()['data']
                #        self.dirmodel[channels[i]]['postframe'] = 0
                #        self.dirmodel[channels[i]]['postvideo'] = True
                #        self.dirmodel[channels[i]]['videoname'] = f'{vidsaveflod}/{timesave}.mp4'
                        #videoqueuea.append(resulttext,f'{vidsaveflod}/{timesave}.mp4',)
                    print(f'resulttext = {resulttext.json()["data"]}')
                    
                except Exception:
                    print("posterror")
                #if self.dirmodel[channels[i]]['postvideo']:

                #print(f'resulttext = {resulttext}')
                #time.sleep(3000)
                dirmodel[channels[i]]['postpretime'] = time.time()
                dirmodel[channels[i]]['detflag'] = False
                #timesave = time.strftime('%Y-%m-%d-%H:%M:%S', self.dirmodel[channels[i]]['posttime'])
                #year=time.strftime('%Y',time.localtime(time.time()))
                #month=time.strftime('%m',time.localtime(time.time()))
                #day=time.strftime('%d',time.localtime(time.time()))
                savefold = f'/mnt/yolo/images/{Path(weights).stem}/{year}/{month}/{day}'
                saveflod = Path(savefold)
                detsavefold = f'/mnt/yolo/detimages/{Path(weights).stem}/{year}/{month}/{day}'
                detsavefold = Path(detsavefold)
                saveflod.mkdir(parents=True, exist_ok=True)
                detsavefold.mkdir(parents=True, exist_ok=True)
                cv2.imwrite(f'{savefold}/{timesave}.jpg',dirmodel[channels[i]]['oripreim'])
                cv2.imwrite(f'{detsavefold}/{timesave}det.jpg',dirmodel[channels[i]]['preim'])
                
            self.view_img = False
            if self.view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(f'{str(p)}-{Path(weights).stem}',
                                    cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(f'{str(p)}-{Path(weights).stem}', im0.shape[1], im0.shape[0])
                im1 = cv2.resize(im0, (1280, 720))
                cv2.imshow(f'{str(p)}-{Path(weights).stem}', im1)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)

            # Print time (inference-only)
            print(f'channels[i]={channels[i]}')
            #LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms {time.strftime('%Y-%m-%d-%H:%M:%S',time.localtime(time.time()))} {Path(weights).stem}")

    # def load(self):
    #     conn = sqlite3.connect(self.source)
    #     c = conn.cursor()
    #     while True:
    #         #
    #         # print ("数据库打开成功")
    #
    #         cursor = c.execute(
    #             "SELECT modelname, addstream,delstream,streaming  from CHANGESTREAM WHERE modelname= (?)",(Path(self.opt.weights).stem,))
    #         # content = cursor.fetchall()
    #         # if content[0][1] ==1 or content[0][2] ==1:
    #         #     c.execute("UPDATE CHANGESTREAM set streamimg = 1 where modelname='yolov5s'")
    #         #     print("updata changestream")
    #         #     conn.commit()
    #         # cursor = c.execute(
    #         # "SELECT modelname, addstream,delstream,streamimg  from CHANGESTREAM WHERE modelname='yolov5s'")
    #         self.contentid = cursor.fetchall()
    #         #global tag
    #         #tag = Value('i', self.contentid[0][3])
    #         #print(tag.value==1)
    #         print(f'loadcontent={self.contentid[0][3]}')
    #         time.sleep(3)
    #     c.close()
    #     conn.close()
    def readpoint(self,weights):
        #conn = sqlite3.connect(self.source)
        #c = conn.cursor()
        #cursor = c.execute(
        #    "SELECT address,fence,point,channel,classindex,ip ,algip,label, durtime from STREAM WHERE modelname= (?)",
        #    (Path(self.opt.weights).stem,))
        data = {
                    "algorithmCode": algmodel[Path(weights).stem],
                    "deviceIp":None
                }
        dirmodel = {}
        result = requests.post(url=urlt,data=data).json()['data']
        channell=[]
        for info in result: 
        #content = cursor.fetchall()
        #self.dirmodel = {}
        #for address,fence,point,channel,classindex,ip ,algip,label,durtime in content:
            #address = f'{address[:-1]}0'
            channel = info["deviceChannel"]
            channell.append(channel)
            dirmodel[channel] = {}
            dirmodel[channel]['fence'] = 1 if len(info["electricFence"])>0 else 0
            #self.dirmodel[channel]['point'] = point
            dirmodel[channel]['channel'] = info['deviceChannel']
            dirmodel[channel]['classindex'] = info['algorithmCode']
            dirmodel[channel]['ip'] = info['deviceIp']
            dirmodel[channel]['algip'] = info['deviceAlgorithmIp']
            dataele = {
                    "algorithmCode": dirmodel[channel]['classindex'],
                    "algorithmIp":dirmodel[channel]['algip'],
                    "channel":dirmodel[channel]['channel']
                }
            resultele = requests.post(url=urlele,data=dataele).json()['data']['pointCollections']
            resultele = resultele.split(',||')
            resultele = tuple(resultele)
            point = '%s:'*len(resultele) %resultele
            if Path(weights).stem == 'personcount':
                resultper = requests.post(url=urlperson,data=dataele).json()['data']
                personcountdir[channel] = resultper
            dirmodel[channel]['point'] = point[:-2]
            dirmodel[channel]['preim'] = None
            dirmodel[channel]['oripreim'] = None
            dirmodel[channel]['detframe'] = [0 for _ in range(2)]
            dirmodel[channel]['postpretime'] = 0
            dirmodel[channel]['detflag'] = False
            dirmodel[channel]['detpretime'] = float('inf')
            dirmodel[channel]['label'] = modellabeldir[data['algorithmCode']]
            dirmodel[channel]['durtime'] = 0
            dirmodel[channel]['posttime'] = 0
            dirmodel[channel]['track_history'] = defaultdict(lambda: [])
            dirmodel[channel]['time_stamps'] = defaultdict(lambda: deque(maxlen=50))
            dirmodel[channel]['instantaneous_velocities'] = defaultdict(lambda: deque(maxlen=10))
            #tmp = f'{weburl}/{channel}/{info["deviceAlgorithmIp"]}'
            #dirmodel[channel]['web'] = f'{weburl}/{info["deviceId"]}/{info["algorithmCode"]}'
        print(dirmodel)
        return sorted(channell),dirmodel
    #def strtolst(self,str):
    #    str = str.split(":")
    #    lista = []
    #    for liststr in str:
    #        if len(liststr) > 0:
    #            li = liststr.split(',')
    #            listpoint = []
    #            for i, j in zip(li[::2], li[1::2]):
    #                listpoint.append((i, j))
    #            lista.append(listpoint)
    #    return listpoint


#def preprocess():
#        print('preprocess-----------------------------------------------')

# def getframe(queue,channelsl,source,tt,numworks,lock,numworkv):
#     while True:
#         print("dataloader")
#         imgsz = [640, 640]
#         print(f'source = {source}')
#         print(f'inchannel ={channelsl}')
#
#         bs = len(dataset)
#         vid_path, vid_writer = [None] * bs, [None] * bs
#         # self.detframe = [[0 for _ in range(8)] for i in range(bs)]
#         # self.postpretime = [0]*bs
#         # Run inference
#
#         #imgsz = (1 , 3, *self.imgsz)
#         print(imgsz)
#         #self.model.warmup(imgsz=(1 , 3, *imgsz))  # warmup
#         seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
#         sourcebase = 'project.db'
#         #
#         # print ("数据库打开成功")
#         pretime = time.time()
#         tag = 0
#         for path, im, im0s, vid_cap, s, videotime,channels in dataset:
#             # print('*'*21)
#             # global tag
#             if time.time()-pretime > 30:
#                 channellist = []
#                 pretime = time.time()
#                 data = {
#                     "algorithmCode": None,
#                     "deviceIp":None
#                 }
#                 result = requests.post(url=urlt,data=data).json()['data']
#                 for info in result:
#                     channellist.append((info['deviceChannel'],info['playbackAddress']))
#                 channelsa  = []
#                 sourcea = []
#                 channellist = set(channellist)
#                 channellist = sorted(channellist,key=lambda x:x[0])
#                 #channellist = set(channellist)
#                 for cha,add in channellist:
#                     channelsa.append(cha)
#                     sourcea.append(add)
#                 channelsl = sorted(channelsl)
#                 #channelsa = sorted(channelsa)
#                 if channelsa!=channelsl:
#                     print(f'channelsa = {channelsa}')
#                     print(f'channelsl = {channelsl}')
#                     dataset.close()
#                     channelsl = channelsa
#                     source = sourcea
#                     break;
#
#                 #conn = sqlite3.connect(sourcebase)
#                 #c = conn.cursor()
#                 #cursor = c.execute("SELECT modelname, addstream,delstream,streaming  from CHANGESTREAM WHERE modelname = 'stream'")
#                 #contentid = cursor.fetchall()
#                 #tag = contentid[0][3]
#             #if tag == 1:
#             #    lock.acquire()
#             #    numworkv.value += 1
#             #    dataset.close()
#             #    if numworkv.value==3:
#             #        print('newstreaming=', tag)
#             #        conn = sqlite3.connect(source)
#             #        c = conn.cursor()
#             #        c.execute("UPDATE CHANGESTREAM set streaming = 0 , addstream=0,delstream=0 where modelname= 'helmet'")
#             #        print(123)
#             #        conn.commit()
#             #        c.close()
#             #        conn.close()
#             #    lock.release()
#             #    print('opencv1')
#                 # cv2.destroyAllWindows()
#             #    print('opencv')
#             #    break
#             #else:
#             #    print('nonewstreaming=', tag)
#             queue.put((path, im, im0s, vid_cap, s, videotime,channels))
#             queue.get() if queue.qsize() > 3 else time.sleep(0.001)
#
# def getmutpro(channels,source,streamlist,numworkv,lock,numworks=1):
#     processlist = []
#     queuelist = []
#     for i in range(numworks):
#         queue = Queue(maxsize=4)
#         process = Process(target=getframe,
#                         args=(queue, channels,source, i,numworks,lock,numworkv))
#         processlist.append(process)
#         process.start()
#         queuelist.append(queue)
#     return queuelist
#     #path = []
#     #im0s = []
#     #vid_cap = None
#     #s = ''
#     #videotime = []
#     #while True:
#     #    imlist = []
#     #    pathlist = []
#     #    im0slist = []
#     #    channelslist = []
#     #    vid_cap = None
#     #    s = ''
#     #    videotimelist = []
#     #    for q in queuelist:
#     #        if q.qsize()>0:
#     #            setframe = q.get()
#     #            path, im, im0s, vid_cap, s, videotime,channels = setframe
#     #            channelslist += channels
#     #            pathlist += path
#     #            im0slist += im0s
#     #            videotimelist += videotime
#     #            imlist.append(im)
#     #    if len(imlist)>0:
#     #        im = np.concatenate(imlist)
#     #    if len(pathlist)>0:
#     #        print(len(path),im.shape,len(im0s))
#     #        streamlist.append((pathlist, im, im0slist, vid_cap, s, videotimelist,channelslist))
#             #print(f'streamlist = {len(streamlist)}')
#     #    streamlist.pop(0) if len(streamlist) > 3 else time.sleep(0.001)

def modelfun(detectdemo,weights,classify=False,conf_thres=0.80,device='',runmodel=None):
    print(weights)
    #detectdemo=Detect(weights=weights,source=sourcedb,classify=classify,conf_thres=conf_thres,device=device)
    detectdemo.infer(weights,classify,conf_thres,device,runmodel)
    #detectdemo.infer(weights, classify, conf_thres, device, runmodel)

def detectmut(channellist,source,modellist,contentlist,modeladir,runmodel={},deviceid=''):
    detectdemo = Detect(channelsl=channellist,source=source)
        # while True:
    for modelname in modellist:
        if modelname in contentlist:
            #if modelname not in runmodel:
        #print(i)
        #detectdemo=Detect(weights=f'/mnt/project/yolodemo/yolov5-master/{i[0]}.pt')
                #if modelname in ['fall','helmet','bag','arm']:
            print(f'weights ={modelname}.pt deviceid {deviceid}')
            #c.execute('select conf,cla from changestream where modelname = (?)',(modelname,))
            #rea = c.fetchall()
            process = threading.Thread(target=modelfun,args=(detectdemo,f'{modelname}.pt',modeladir[modelname]['cla'],modeladir[modelname]['conf'],deviceid,runmodel))
            #elif modelname in ['personcount','persontre']:
            #    process = Process(target=modelfun,args=(streamlist,videoqueue,f'{modelname}.pt',dbpath,False,0.50,'',runmodel))
            #elif modelname in ['uniform']:
            #    process = Process(target=modelfun,args=(streamlist,videoqueue,f'{modelname}.pt',dbpath,True,0.50,'',runmodel))
            #else:
            #    process = Process(target=modelfun,args=(streamlist,f'{modelname}.pt',dbpath))
            #runmodel[modelname] = 1
    #processes.append(process)
    #process.start()
    #detectobj = Process(target=detectdemo.infer,args=(queue,))
    # Detect(weights=f'{i[0]}.pt')

            time.sleep(3)
            process.start()




def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
    opt = parser.parse_args()
    return opt


def main(opt):
    check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == '__main__':
    torch.multiprocessing.set_start_method('spawn')
    #set_start_method('spawn')
    #multiprocessing.set_start_method('spawn')
    torch.cuda.set_per_process_memory_fraction(0.6)
    opt = parse_opt()
    dbpath = 'projectnew.db'
    conn = sqlite3.connect(dbpath)
#
# print ("数据库打开成功")
    c = conn.cursor()
    task(c,conn,urlt,urla)
    cursor = c.execute("SELECT modelname from CHANGESTREAM where modelname = 'jump'")
    #cursor = c.execute("SELECT modelname from CHANGESTREAM where modelname = 'helmet'")
    content = cursor.fetchall()
    contentlist = []
    for con in content:
        contentlist.append(con[0])
    #cursor = c.execute("SELECT address,modelname,channel from STREAM where modelname='helmet' or modelname = 'sleep' or modelname = 'smoke' or modelname = 'danager'or modelname = 'gloves' or modelname = 'other'")
    cursor = c.execute("SELECT address,modelname,channel from STREAM where modelname = 'jump'")
    contenta = cursor.fetchall()
    source = []
    modellist = []
    addcha = []
    channellist = []
    for i in contenta:
        addcha.append((i[0],i[2]))
        modellist.append(i[1])
    addcha = set(addcha)
    addcha = sorted(addcha,key=lambda x:x[1])
    for a,cha in addcha:
        source.append(a)
        channellist.append(cha)
    print(addcha)
    #source = set(source)
    source = list(source)
    #source.sort()
    modellist = set(modellist)
    n = len(content)
    print(f'modelname={n}')
    print(content)
    #content.reverse()
    print(content)
    # main(opt)
    #processes = []
    streamqueue = Queue(maxsize=4)
    numworkv = Value('i', 0)
    manager = Manager()
    lock = multiprocessing.Lock()
    streamlist = manager.list()
    numworks = 1

    #queuelist = getmutpro(channellist,source, streamlist, numworkv, lock, numworks)
    #thread.start()
    #videoqueue = Queue(maxsize=20)
    #thread1 = threading.Thread(target=postvideo, args=(videoqueue,))
    #thread1.start()
    #pool = ThreadPoolExecutor(max_workers=n)
    #runmodel = manager.dict()
    modeladir = {}
    for modelname in modellist:
        if modelname in contentlist:
            #if modelname not in runmodel:
        #print(i)
        #detectdemo=Detect(weights=f'/mnt/project/yolodemo/yolov5-master/{i[0]}.pt')
                #if modelname in ['fall','helmet','bag','arm']:
            print(f'weights ={modelname}.pt')
            c.execute('select conf,cla from changestream where modelname = (?)',(modelname,))
            rea = c.fetchall()
            #print(f'rea')
            modeladir.setdefault(modelname,{})
            modeladir[modelname]['conf'] = rea[0][0]
            modeladir[modelname]['cla'] = rea[0][1]
    runmodel = {}
    for deviceid,num in enumerate(range(0,len(channellist),13)):
        process = Process(target=detectmut,args=(channellist[num:num+13],source[num:num+13],modellist,contentlist,modeladir,{},deviceid%2))
        time.sleep(3)
        process.start()
        #deviceid = deviceid+1
        # detectdemo = Detect(channelsl=channellist[0:num],source=source[0:num])
        # # while True:
        # for modelname in modellist:
        #     if modelname in contentlist:
        #         if modelname not in runmodel:
        #     #print(i)
        #     #detectdemo=Detect(weights=f'/mnt/project/yolodemo/yolov5-master/{i[0]}.pt')
        #             #if modelname in ['fall','helmet','bag','arm']:
        #             print(f'weights ={modelname}.pt')
        #             c.execute('select conf,cla from changestream where modelname = (?)',(modelname,))
        #             rea = c.fetchall()
        #             process = threading.Thread(target=modelfun,args=(detectdemo,f'{modelname}.pt',rea[0][1],rea[0][0],'',runmodel))
        #             #elif modelname in ['personcount','persontre']:
        #             #    process = Process(target=modelfun,args=(streamlist,videoqueue,f'{modelname}.pt',dbpath,False,0.50,'',runmodel))
        #             #elif modelname in ['uniform']:
        #             #    process = Process(target=modelfun,args=(streamlist,videoqueue,f'{modelname}.pt',dbpath,True,0.50,'',runmodel))
        #             #else:
        #             #    process = Process(target=modelfun,args=(streamlist,f'{modelname}.pt',dbpath))
        #             runmodel[modelname] = 1
        #     #processes.append(process)
        #     #process.start()
        #     #detectobj = Process(target=detectdemo.infer,args=(queue,))
        #     # Detect(weights=f'{i[0]}.pt')

        #             time.sleep(3)
        #             process.start()
        # time.sleep(900)
        # task(c,conn,urlt,urla)
        # cursor = c.execute("SELECT modelname from CHANGESTREAM where modelname = 'helmet' or modelname = 'fall' or modelname = 'uniform' or modelname = 'personcount' or modelname = 'arm' or modelname = 'bag'")
        # #cursor = c.execute("SELECT modelname from CHANGESTREAM where modelname = 'helmet'")
        # content = cursor.fetchall()
        # contentlist = []
        # for con in content:
        #     contentlist.append(con[0])
        # #cursor = c.execute("SELECT address,modelname,channel from STREAM where modelname='helmet' or modelname = 'sleep' or modelname = 'smoke' or modelname = 'danager'or modelname = 'gloves' or modelname = 'other'")
        # cursor = c.execute("SELECT address,modelname,channel from STREAM ")
        # contenta = cursor.fetchall()
        # source = []
        # modellist = []
        # addcha = []
        # channellist = []
        # for i in contenta:
        #     addcha.append((i[0],i[2]))
        #     modellist.append(i[1])
        # addcha = set(addcha)
        # addcha = sorted(addcha)
        # for a,cha in addcha:
        #     source.append(a)
        #     channellist.append(cha)
        # print(addcha)
        # #source = set(source)
        # source = list(source)
        # #source.sort()
        # modellist = set(modellist)
        # n = len(content)
        # print(f'modelname={n}')
        # print(content)
        # #content.reverse()
        # print(content)
        #pool.submit(detectobj.infer)

    #cursor = c.execute("SELECT modelname from CHANGESTREAM where modelname = 'fall'")
    #content = cursor.fetchall()
    #n = len(content)
    #print(f'modelname={n}')
    #print(content)
    #content.reverse()
    #print(content)
    # main(opt)
    #processes = []
    #pool = ProcessPoolExecutor(max_workers=n)
    #for i in content:
        #print(i)
        #detectdemo=Detect(weights=f'{i[0]}.pt')
        #process = Process(target=detectdemo.infer)
        #processes.append(process)
        #process.start()
        #detectobj = Detect(weights=f'{i[0]}.pt')
    #    time.sleep(3)
        #pool.submit(detectobj.infer)
    #    print('111111111111111111111111111111111111111111111111111111111')
        #pool.submit(TestA().func1, '张三', i)
        #print('----------------------------------------------------------------')
    #time.sleep(3000)
    # 等待所有进程执行完毕
    #for process in processes:
    #    process.join()

        #pool.submit(Detect(weights=f'{i[0]}.pt').infer)
    # if isinstance(opt.weights,list):
    #     opt.weights = opt.weights[0]
    #signal.signal(signal.SIGINT, my_handler)
    #detectdemo1 = Detect(weights=f'{content[0][0]}.pt')
    #detectdemo1.infer()
    #a = Test
    #with ProcessPoolExecutor(3) as ppool:
        #for i in range(3):
    #        print('hello')
                        #ppool.submit(self.postprocess,pred[i::3],path[i::3],im0s[i::3],dataset,im[i::3],s)
            #ppool.submit(TestA().func1, '张三', i)
    #ta = TestA()
    #with ProcessPoolExecutor(5) as ppool: # 创建一个5个进程的进程池
    #    for i in range(1, 4):
    #        ppool.submit(func1, '张三', i)
    #f1= pool.submit(detectdemo1.infer)
    # print("线程1-----------------------------------------------------------------------------------")
    #detectdemo2 = Detect(weights=r"helmet.pt")
    #f2=pool.submit(detectdemo2.infer)
    # print("线程2-------------------------------------------------------------------------------------")
    #detectdemo3 = threading.Thread(target=detectdemo3.infer)
    #detectdemo3 = Detect(weights=r"fall.pt")
    #f3=pool.submit(detectdemo3.infer)