|
@@ -0,0 +1,507 @@
|
|
|
+#include <fstream>
|
|
|
+#include <iostream>
|
|
|
+#include <sstream>
|
|
|
+#include <numeric>
|
|
|
+#include <chrono>
|
|
|
+#include <vector>
|
|
|
+#include <opencv2/opencv.hpp>
|
|
|
+#include <dirent.h>
|
|
|
+#include "NvInfer.h"
|
|
|
+#include "cuda_runtime_api.h"
|
|
|
+#include "logging.h"
|
|
|
+#include "BYTETracker.h"
|
|
|
+
|
|
|
+#define CHECK(status) \
|
|
|
+ do\
|
|
|
+ {\
|
|
|
+ auto ret = (status);\
|
|
|
+ if (ret != 0)\
|
|
|
+ {\
|
|
|
+ cerr << "Cuda failure: " << ret << endl;\
|
|
|
+ abort();\
|
|
|
+ }\
|
|
|
+ } while (0)
|
|
|
+
|
|
|
+#define DEVICE 0 // GPU id
|
|
|
+#define NMS_THRESH 0.7
|
|
|
+#define BBOX_CONF_THRESH 0.1
|
|
|
+
|
|
|
+using namespace nvinfer1;
|
|
|
+
|
|
|
+// stuff we know about the network and the input/output blobs
|
|
|
+static const int INPUT_W = 1088;
|
|
|
+static const int INPUT_H = 608;
|
|
|
+const char* INPUT_BLOB_NAME = "input_0";
|
|
|
+const char* OUTPUT_BLOB_NAME = "output_0";
|
|
|
+static Logger gLogger;
|
|
|
+
|
|
|
+Mat static_resize(Mat& img) {
|
|
|
+ float r = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
|
|
|
+ // r = std::min(r, 1.0f);
|
|
|
+ int unpad_w = r * img.cols;
|
|
|
+ int unpad_h = r * img.rows;
|
|
|
+ Mat re(unpad_h, unpad_w, CV_8UC3);
|
|
|
+ resize(img, re, re.size());
|
|
|
+ Mat out(INPUT_H, INPUT_W, CV_8UC3, Scalar(114, 114, 114));
|
|
|
+ re.copyTo(out(Rect(0, 0, re.cols, re.rows)));
|
|
|
+ return out;
|
|
|
+}
|
|
|
+
|
|
|
+struct GridAndStride
|
|
|
+{
|
|
|
+ int grid0;
|
|
|
+ int grid1;
|
|
|
+ int stride;
|
|
|
+};
|
|
|
+
|
|
|
+static void generate_grids_and_stride(const int target_w, const int target_h, vector<int>& strides, vector<GridAndStride>& grid_strides)
|
|
|
+{
|
|
|
+ for (auto stride : strides)
|
|
|
+ {
|
|
|
+ int num_grid_w = target_w / stride;
|
|
|
+ int num_grid_h = target_h / stride;
|
|
|
+ for (int g1 = 0; g1 < num_grid_h; g1++)
|
|
|
+ {
|
|
|
+ for (int g0 = 0; g0 < num_grid_w; g0++)
|
|
|
+ {
|
|
|
+ grid_strides.push_back((GridAndStride){g0, g1, stride});
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static inline float intersection_area(const Object& a, const Object& b)
|
|
|
+{
|
|
|
+ Rect_<float> inter = a.rect & b.rect;
|
|
|
+ return inter.area();
|
|
|
+}
|
|
|
+
|
|
|
+static void qsort_descent_inplace(vector<Object>& faceobjects, int left, int right)
|
|
|
+{
|
|
|
+ int i = left;
|
|
|
+ int j = right;
|
|
|
+ float p = faceobjects[(left + right) / 2].prob;
|
|
|
+
|
|
|
+ while (i <= j)
|
|
|
+ {
|
|
|
+ while (faceobjects[i].prob > p)
|
|
|
+ i++;
|
|
|
+
|
|
|
+ while (faceobjects[j].prob < p)
|
|
|
+ j--;
|
|
|
+
|
|
|
+ if (i <= j)
|
|
|
+ {
|
|
|
+ // swap
|
|
|
+ swap(faceobjects[i], faceobjects[j]);
|
|
|
+
|
|
|
+ i++;
|
|
|
+ j--;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ #pragma omp parallel sections
|
|
|
+ {
|
|
|
+ #pragma omp section
|
|
|
+ {
|
|
|
+ if (left < j) qsort_descent_inplace(faceobjects, left, j);
|
|
|
+ }
|
|
|
+ #pragma omp section
|
|
|
+ {
|
|
|
+ if (i < right) qsort_descent_inplace(faceobjects, i, right);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static void qsort_descent_inplace(vector<Object>& objects)
|
|
|
+{
|
|
|
+ if (objects.empty())
|
|
|
+ return;
|
|
|
+
|
|
|
+ qsort_descent_inplace(objects, 0, objects.size() - 1);
|
|
|
+}
|
|
|
+
|
|
|
+static void nms_sorted_bboxes(const vector<Object>& faceobjects, vector<int>& picked, float nms_threshold)
|
|
|
+{
|
|
|
+ picked.clear();
|
|
|
+
|
|
|
+ const int n = faceobjects.size();
|
|
|
+
|
|
|
+ vector<float> areas(n);
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
+ {
|
|
|
+ areas[i] = faceobjects[i].rect.area();
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < n; i++)
|
|
|
+ {
|
|
|
+ const Object& a = faceobjects[i];
|
|
|
+
|
|
|
+ int keep = 1;
|
|
|
+ for (int j = 0; j < (int)picked.size(); j++)
|
|
|
+ {
|
|
|
+ const Object& b = faceobjects[picked[j]];
|
|
|
+
|
|
|
+ // intersection over union
|
|
|
+ float inter_area = intersection_area(a, b);
|
|
|
+ float union_area = areas[i] + areas[picked[j]] - inter_area;
|
|
|
+ // float IoU = inter_area / union_area
|
|
|
+ if (inter_area / union_area > nms_threshold)
|
|
|
+ keep = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (keep)
|
|
|
+ picked.push_back(i);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+static void generate_yolox_proposals(vector<GridAndStride> grid_strides, float* feat_blob, float prob_threshold, vector<Object>& objects)
|
|
|
+{
|
|
|
+ const int num_class = 1;
|
|
|
+
|
|
|
+ const int num_anchors = grid_strides.size();
|
|
|
+
|
|
|
+ for (int anchor_idx = 0; anchor_idx < num_anchors; anchor_idx++)
|
|
|
+ {
|
|
|
+ const int grid0 = grid_strides[anchor_idx].grid0;
|
|
|
+ const int grid1 = grid_strides[anchor_idx].grid1;
|
|
|
+ const int stride = grid_strides[anchor_idx].stride;
|
|
|
+
|
|
|
+ const int basic_pos = anchor_idx * (num_class + 5);
|
|
|
+
|
|
|
+ // yolox/models/yolo_head.py decode logic
|
|
|
+ float x_center = (feat_blob[basic_pos+0] + grid0) * stride;
|
|
|
+ float y_center = (feat_blob[basic_pos+1] + grid1) * stride;
|
|
|
+ float w = exp(feat_blob[basic_pos+2]) * stride;
|
|
|
+ float h = exp(feat_blob[basic_pos+3]) * stride;
|
|
|
+ float x0 = x_center - w * 0.5f;
|
|
|
+ float y0 = y_center - h * 0.5f;
|
|
|
+
|
|
|
+ float box_objectness = feat_blob[basic_pos+4];
|
|
|
+ for (int class_idx = 0; class_idx < num_class; class_idx++)
|
|
|
+ {
|
|
|
+ float box_cls_score = feat_blob[basic_pos + 5 + class_idx];
|
|
|
+ float box_prob = box_objectness * box_cls_score;
|
|
|
+ if (box_prob > prob_threshold)
|
|
|
+ {
|
|
|
+ Object obj;
|
|
|
+ obj.rect.x = x0;
|
|
|
+ obj.rect.y = y0;
|
|
|
+ obj.rect.width = w;
|
|
|
+ obj.rect.height = h;
|
|
|
+ obj.label = class_idx;
|
|
|
+ obj.prob = box_prob;
|
|
|
+
|
|
|
+ objects.push_back(obj);
|
|
|
+ }
|
|
|
+
|
|
|
+ } // class loop
|
|
|
+
|
|
|
+ } // point anchor loop
|
|
|
+}
|
|
|
+
|
|
|
+float* blobFromImage(Mat& img){
|
|
|
+ cvtColor(img, img, COLOR_BGR2RGB);
|
|
|
+
|
|
|
+ float* blob = new float[img.total()*3];
|
|
|
+ int channels = 3;
|
|
|
+ int img_h = img.rows;
|
|
|
+ int img_w = img.cols;
|
|
|
+ vector<float> mean = {0.485, 0.456, 0.406};
|
|
|
+ vector<float> std = {0.229, 0.224, 0.225};
|
|
|
+ for (size_t c = 0; c < channels; c++)
|
|
|
+ {
|
|
|
+ for (size_t h = 0; h < img_h; h++)
|
|
|
+ {
|
|
|
+ for (size_t w = 0; w < img_w; w++)
|
|
|
+ {
|
|
|
+ blob[c * img_w * img_h + h * img_w + w] =
|
|
|
+ (((float)img.at<Vec3b>(h, w)[c]) / 255.0f - mean[c]) / std[c];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return blob;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+static void decode_outputs(float* prob, vector<Object>& objects, float scale, const int img_w, const int img_h) {
|
|
|
+ vector<Object> proposals;
|
|
|
+ vector<int> strides = {8, 16, 32};
|
|
|
+ vector<GridAndStride> grid_strides;
|
|
|
+ generate_grids_and_stride(INPUT_W, INPUT_H, strides, grid_strides);
|
|
|
+ generate_yolox_proposals(grid_strides, prob, BBOX_CONF_THRESH, proposals);
|
|
|
+ //std::cout << "num of boxes before nms: " << proposals.size() << std::endl;
|
|
|
+
|
|
|
+ qsort_descent_inplace(proposals);
|
|
|
+
|
|
|
+ vector<int> picked;
|
|
|
+ nms_sorted_bboxes(proposals, picked, NMS_THRESH);
|
|
|
+
|
|
|
+
|
|
|
+ int count = picked.size();
|
|
|
+
|
|
|
+ //std::cout << "num of boxes: " << count << std::endl;
|
|
|
+
|
|
|
+ objects.resize(count);
|
|
|
+ for (int i = 0; i < count; i++)
|
|
|
+ {
|
|
|
+ objects[i] = proposals[picked[i]];
|
|
|
+
|
|
|
+ // adjust offset to original unpadded
|
|
|
+ float x0 = (objects[i].rect.x) / scale;
|
|
|
+ float y0 = (objects[i].rect.y) / scale;
|
|
|
+ float x1 = (objects[i].rect.x + objects[i].rect.width) / scale;
|
|
|
+ float y1 = (objects[i].rect.y + objects[i].rect.height) / scale;
|
|
|
+
|
|
|
+ // clip
|
|
|
+ // x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
|
|
|
+ // y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
|
|
|
+ // x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
|
|
|
+ // y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
|
|
|
+
|
|
|
+ objects[i].rect.x = x0;
|
|
|
+ objects[i].rect.y = y0;
|
|
|
+ objects[i].rect.width = x1 - x0;
|
|
|
+ objects[i].rect.height = y1 - y0;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+const float color_list[80][3] =
|
|
|
+{
|
|
|
+ {0.000, 0.447, 0.741},
|
|
|
+ {0.850, 0.325, 0.098},
|
|
|
+ {0.929, 0.694, 0.125},
|
|
|
+ {0.494, 0.184, 0.556},
|
|
|
+ {0.466, 0.674, 0.188},
|
|
|
+ {0.301, 0.745, 0.933},
|
|
|
+ {0.635, 0.078, 0.184},
|
|
|
+ {0.300, 0.300, 0.300},
|
|
|
+ {0.600, 0.600, 0.600},
|
|
|
+ {1.000, 0.000, 0.000},
|
|
|
+ {1.000, 0.500, 0.000},
|
|
|
+ {0.749, 0.749, 0.000},
|
|
|
+ {0.000, 1.000, 0.000},
|
|
|
+ {0.000, 0.000, 1.000},
|
|
|
+ {0.667, 0.000, 1.000},
|
|
|
+ {0.333, 0.333, 0.000},
|
|
|
+ {0.333, 0.667, 0.000},
|
|
|
+ {0.333, 1.000, 0.000},
|
|
|
+ {0.667, 0.333, 0.000},
|
|
|
+ {0.667, 0.667, 0.000},
|
|
|
+ {0.667, 1.000, 0.000},
|
|
|
+ {1.000, 0.333, 0.000},
|
|
|
+ {1.000, 0.667, 0.000},
|
|
|
+ {1.000, 1.000, 0.000},
|
|
|
+ {0.000, 0.333, 0.500},
|
|
|
+ {0.000, 0.667, 0.500},
|
|
|
+ {0.000, 1.000, 0.500},
|
|
|
+ {0.333, 0.000, 0.500},
|
|
|
+ {0.333, 0.333, 0.500},
|
|
|
+ {0.333, 0.667, 0.500},
|
|
|
+ {0.333, 1.000, 0.500},
|
|
|
+ {0.667, 0.000, 0.500},
|
|
|
+ {0.667, 0.333, 0.500},
|
|
|
+ {0.667, 0.667, 0.500},
|
|
|
+ {0.667, 1.000, 0.500},
|
|
|
+ {1.000, 0.000, 0.500},
|
|
|
+ {1.000, 0.333, 0.500},
|
|
|
+ {1.000, 0.667, 0.500},
|
|
|
+ {1.000, 1.000, 0.500},
|
|
|
+ {0.000, 0.333, 1.000},
|
|
|
+ {0.000, 0.667, 1.000},
|
|
|
+ {0.000, 1.000, 1.000},
|
|
|
+ {0.333, 0.000, 1.000},
|
|
|
+ {0.333, 0.333, 1.000},
|
|
|
+ {0.333, 0.667, 1.000},
|
|
|
+ {0.333, 1.000, 1.000},
|
|
|
+ {0.667, 0.000, 1.000},
|
|
|
+ {0.667, 0.333, 1.000},
|
|
|
+ {0.667, 0.667, 1.000},
|
|
|
+ {0.667, 1.000, 1.000},
|
|
|
+ {1.000, 0.000, 1.000},
|
|
|
+ {1.000, 0.333, 1.000},
|
|
|
+ {1.000, 0.667, 1.000},
|
|
|
+ {0.333, 0.000, 0.000},
|
|
|
+ {0.500, 0.000, 0.000},
|
|
|
+ {0.667, 0.000, 0.000},
|
|
|
+ {0.833, 0.000, 0.000},
|
|
|
+ {1.000, 0.000, 0.000},
|
|
|
+ {0.000, 0.167, 0.000},
|
|
|
+ {0.000, 0.333, 0.000},
|
|
|
+ {0.000, 0.500, 0.000},
|
|
|
+ {0.000, 0.667, 0.000},
|
|
|
+ {0.000, 0.833, 0.000},
|
|
|
+ {0.000, 1.000, 0.000},
|
|
|
+ {0.000, 0.000, 0.167},
|
|
|
+ {0.000, 0.000, 0.333},
|
|
|
+ {0.000, 0.000, 0.500},
|
|
|
+ {0.000, 0.000, 0.667},
|
|
|
+ {0.000, 0.000, 0.833},
|
|
|
+ {0.000, 0.000, 1.000},
|
|
|
+ {0.000, 0.000, 0.000},
|
|
|
+ {0.143, 0.143, 0.143},
|
|
|
+ {0.286, 0.286, 0.286},
|
|
|
+ {0.429, 0.429, 0.429},
|
|
|
+ {0.571, 0.571, 0.571},
|
|
|
+ {0.714, 0.714, 0.714},
|
|
|
+ {0.857, 0.857, 0.857},
|
|
|
+ {0.000, 0.447, 0.741},
|
|
|
+ {0.314, 0.717, 0.741},
|
|
|
+ {0.50, 0.5, 0}
|
|
|
+};
|
|
|
+
|
|
|
+void doInference(IExecutionContext& context, float* input, float* output, const int output_size, Size input_shape) {
|
|
|
+ const ICudaEngine& engine = context.getEngine();
|
|
|
+
|
|
|
+ // Pointers to input and output device buffers to pass to engine.
|
|
|
+ // Engine requires exactly IEngine::getNbBindings() number of buffers.
|
|
|
+ assert(engine.getNbBindings() == 2);
|
|
|
+ void* buffers[2];
|
|
|
+
|
|
|
+ // In order to bind the buffers, we need to know the names of the input and output tensors.
|
|
|
+ // Note that indices are guaranteed to be less than IEngine::getNbBindings()
|
|
|
+ const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
|
|
|
+
|
|
|
+ assert(engine.getBindingDataType(inputIndex) == nvinfer1::DataType::kFLOAT);
|
|
|
+ const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
|
|
|
+ assert(engine.getBindingDataType(outputIndex) == nvinfer1::DataType::kFLOAT);
|
|
|
+ int mBatchSize = engine.getMaxBatchSize();
|
|
|
+
|
|
|
+ // Create GPU buffers on device
|
|
|
+ CHECK(cudaMalloc(&buffers[inputIndex], 3 * input_shape.height * input_shape.width * sizeof(float)));
|
|
|
+ CHECK(cudaMalloc(&buffers[outputIndex], output_size*sizeof(float)));
|
|
|
+
|
|
|
+ // Create stream
|
|
|
+ cudaStream_t stream;
|
|
|
+ CHECK(cudaStreamCreate(&stream));
|
|
|
+
|
|
|
+ // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
|
|
|
+ CHECK(cudaMemcpyAsync(buffers[inputIndex], input, 3 * input_shape.height * input_shape.width * sizeof(float), cudaMemcpyHostToDevice, stream));
|
|
|
+ context.enqueue(1, buffers, stream, nullptr);
|
|
|
+ CHECK(cudaMemcpyAsync(output, buffers[outputIndex], output_size * sizeof(float), cudaMemcpyDeviceToHost, stream));
|
|
|
+ cudaStreamSynchronize(stream);
|
|
|
+
|
|
|
+ // Release stream and buffers
|
|
|
+ cudaStreamDestroy(stream);
|
|
|
+ CHECK(cudaFree(buffers[inputIndex]));
|
|
|
+ CHECK(cudaFree(buffers[outputIndex]));
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+int main(int argc, char** argv) {
|
|
|
+ cudaSetDevice(DEVICE);
|
|
|
+
|
|
|
+ // create a model using the API directly and serialize it to a stream
|
|
|
+ char *trtModelStream{nullptr};
|
|
|
+ size_t size{0};
|
|
|
+
|
|
|
+ if (argc == 4 && string(argv[2]) == "-i") {
|
|
|
+ const string engine_file_path {argv[1]};
|
|
|
+ ifstream file(engine_file_path, ios::binary);
|
|
|
+ if (file.good()) {
|
|
|
+ file.seekg(0, file.end);
|
|
|
+ size = file.tellg();
|
|
|
+ file.seekg(0, file.beg);
|
|
|
+ trtModelStream = new char[size];
|
|
|
+ assert(trtModelStream);
|
|
|
+ file.read(trtModelStream, size);
|
|
|
+ file.close();
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ cerr << "arguments not right!" << endl;
|
|
|
+ cerr << "run 'python3 tools/trt.py -f exps/example/mot/yolox_s_mix_det.py -c pretrained/bytetrack_s_mot17.pth.tar' to serialize model first!" << std::endl;
|
|
|
+ cerr << "Then use the following command:" << endl;
|
|
|
+ cerr << "cd demo/TensorRT/cpp/build" << endl;
|
|
|
+ cerr << "./bytetrack ../../../../YOLOX_outputs/yolox_s_mix_det/model_trt.engine -i ../../../../videos/palace.mp4 // deserialize file and run inference" << std::endl;
|
|
|
+ return -1;
|
|
|
+ }
|
|
|
+ const string input_video_path {argv[3]};
|
|
|
+
|
|
|
+ IRuntime* runtime = createInferRuntime(gLogger);
|
|
|
+ assert(runtime != nullptr);
|
|
|
+ ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
|
|
|
+ assert(engine != nullptr);
|
|
|
+ IExecutionContext* context = engine->createExecutionContext();
|
|
|
+ assert(context != nullptr);
|
|
|
+ delete[] trtModelStream;
|
|
|
+ auto out_dims = engine->getBindingDimensions(1);
|
|
|
+ auto output_size = 1;
|
|
|
+ for(int j=0;j<out_dims.nbDims;j++) {
|
|
|
+ output_size *= out_dims.d[j];
|
|
|
+ }
|
|
|
+ static float* prob = new float[output_size];
|
|
|
+
|
|
|
+ VideoCapture cap(input_video_path);
|
|
|
+ if (!cap.isOpened())
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ int img_w = cap.get(CAP_PROP_FRAME_WIDTH);
|
|
|
+ int img_h = cap.get(CAP_PROP_FRAME_HEIGHT);
|
|
|
+ int fps = cap.get(CAP_PROP_FPS);
|
|
|
+ long nFrame = static_cast<long>(cap.get(CAP_PROP_FRAME_COUNT));
|
|
|
+ cout << "Total frames: " << nFrame << endl;
|
|
|
+
|
|
|
+ VideoWriter writer("demo.mp4", VideoWriter::fourcc('m', 'p', '4', 'v'), fps, Size(img_w, img_h));
|
|
|
+
|
|
|
+ Mat img;
|
|
|
+ BYTETracker tracker(fps, 30);
|
|
|
+ int num_frames = 0;
|
|
|
+ int total_ms = 0;
|
|
|
+ while (true)
|
|
|
+ {
|
|
|
+ if(!cap.read(img))
|
|
|
+ break;
|
|
|
+ num_frames ++;
|
|
|
+ if (num_frames % 20 == 0)
|
|
|
+ {
|
|
|
+ cout << "Processing frame " << num_frames << " (" << num_frames * 1000000 / total_ms << " fps)" << endl;
|
|
|
+ }
|
|
|
+ if (img.empty())
|
|
|
+ break;
|
|
|
+ Mat pr_img = static_resize(img);
|
|
|
+
|
|
|
+ float* blob;
|
|
|
+ blob = blobFromImage(pr_img);
|
|
|
+ float scale = min(INPUT_W / (img.cols*1.0), INPUT_H / (img.rows*1.0));
|
|
|
+
|
|
|
+ // run inference
|
|
|
+ auto start = chrono::system_clock::now();
|
|
|
+ doInference(*context, blob, prob, output_size, pr_img.size());
|
|
|
+ vector<Object> objects;
|
|
|
+ decode_outputs(prob, objects, scale, img_w, img_h);
|
|
|
+ vector<STrack> output_stracks = tracker.update(objects);
|
|
|
+ auto end = chrono::system_clock::now();
|
|
|
+ total_ms = total_ms + chrono::duration_cast<chrono::microseconds>(end - start).count();
|
|
|
+
|
|
|
+ for (int i = 0; i < output_stracks.size(); i++)
|
|
|
+ {
|
|
|
+ vector<float> tlwh = output_stracks[i].tlwh;
|
|
|
+ bool vertical = tlwh[2] / tlwh[3] > 1.6;
|
|
|
+ if (tlwh[2] * tlwh[3] > 20 && !vertical)
|
|
|
+ {
|
|
|
+ Scalar s = tracker.get_color(output_stracks[i].track_id);
|
|
|
+ putText(img, format("%d", output_stracks[i].track_id), Point(tlwh[0], tlwh[1] - 5),
|
|
|
+ 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
|
|
|
+ rectangle(img, Rect(tlwh[0], tlwh[1], tlwh[2], tlwh[3]), s, 2);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ putText(img, format("frame: %d fps: %d num: %d", num_frames, num_frames * 1000000 / total_ms, output_stracks.size()),
|
|
|
+ Point(0, 30), 0, 0.6, Scalar(0, 0, 255), 2, LINE_AA);
|
|
|
+ writer.write(img);
|
|
|
+
|
|
|
+ delete blob;
|
|
|
+ char c = waitKey(1);
|
|
|
+ if (c > 0)
|
|
|
+ {
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cap.release();
|
|
|
+ cout << "FPS: " << num_frames * 1000000 / total_ms << endl;
|
|
|
+ // destroy the engine
|
|
|
+ context->destroy();
|
|
|
+ engine->destroy();
|
|
|
+ runtime->destroy();
|
|
|
+ return 0;
|
|
|
+}
|