使用tensorrt 推理 resnet

leon 7fc39c1f6b 添加readme vor 10 Monaten
.vscode 2507494339 添加cpm vor 10 Monaten
src 9a348ed79d 完善测试 vor 10 Monaten
.gitignore d21fa429d7 添加gitignore vor 10 Monaten
Makefile 1733cc9ff0 添加Makefile vor 10 Monaten
README.md 7fc39c1f6b 添加readme vor 10 Monaten

README.md

Tensorrt 推理 resnet 分类模型

使用tensorrt推理resnet模型流程

模型转换

trtexec --onnx=resnet.onnx --saveEngine=resnet.engine --fp16 --verbose

代码使用

  1. 直接推理

    cv::Mat image = cv::imread("inference/car.jpg");
    auto resnet = resnet::load("resnet.engine");
    if (resnet == nullptr) return;
    auto attr = resnet->forward(cvimg(image));
    printf("score : %lf, label : %d\n", attr.confidence, attr.class_label);
    /*
    [infer.cu:393]: Infer 0x564a443b3440 [StaticShape]
    [infer.cu:405]: Inputs: 1
    [infer.cu:409]:     0.input.1 : shape {1x3x224x224}
    [infer.cu:412]: Outputs: 1
    [infer.cu:416]:     0.343 : shape {1x3}
    score : 0.997001, label : 2
    */
    
  2. cpm模式

    cv::Mat image = cv::imread("inference/car.jpg");
    
    cpm::Instance<resnet::Attribute, resnet::Image, resnet::Infer> cpmi;
    bool ok = cpmi.start([] { return resnet::load("resnet.engine"); }, max_infer_batch);
    
    cpmi.commit(cvimg(image)).get();