使用tensorrt 推理 resnet

leon 6ae216b7ee bugfix vor 10 Monaten
.vscode a3c946c469 添加pytbind11支持 vor 10 Monaten
src 6ae216b7ee bugfix vor 10 Monaten
.gitignore d21fa429d7 添加gitignore vor 10 Monaten
Makefile 474b544d0c 更新Makefile vor 10 Monaten
README.md 68f75c65f1 完善readme vor 10 Monaten

README.md

Tensorrt 推理 resnet 分类模型

使用tensorrt推理resnet模型流程

模型转换

trtexec --onnx=resnet.onnx --saveEngine=resnet.engine --fp16 --verbose

代码使用

  1. 直接推理

    cv::Mat image = cv::imread("inference/car.jpg");
    auto resnet = resnet::load("resnet.engine");
    if (resnet == nullptr) return;
    auto attr = resnet->forward(cvimg(image));
    printf("score : %lf, label : %d\n", attr.confidence, attr.class_label);
    /*
    [infer.cu:393]: Infer 0x564a443b3440 [StaticShape]
    [infer.cu:405]: Inputs: 1
    [infer.cu:409]:     0.input.1 : shape {1x3x224x224}
    [infer.cu:412]: Outputs: 1
    [infer.cu:416]:     0.343 : shape {1x3}
    score : 0.997001, label : 2
    */
    
  2. cpm模式

    cv::Mat image = cv::imread("inference/car.jpg");
    
    cpm::Instance<resnet::Attribute, resnet::Image, resnet::Infer> cpmi;
    bool ok = cpmi.start([] { return resnet::load("resnet.engine"); }, max_infer_batch);
    
    cpmi.commit(cvimg(image)).get();
    

推理时间

模型 精度 时间
resnet34 fp16 0.49488ms

Reference