1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
- from qwen_vl_utils import process_vision_info
- model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
- "../models/Qwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto"
- )
- # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
- # model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
- # "Qwen/Qwen2.5-VL-3B-Instruct",
- # torch_dtype=torch.bfloat16,
- # attn_implementation="flash_attention_2",
- # device_map="auto",
- # )
- # default processer
- processor = AutoProcessor.from_pretrained("../models/Qwen2.5-VL-3B-Instruct")
- # The default range for the number of visual tokens per image in the model is 4-16384.
- # You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
- # min_pixels = 256*28*28
- # max_pixels = 1280*28*28
- # processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
- if __name__ == "__main__":
- messages = [
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
- },
- {"type": "text", "text": "Describe this image."},
- ],
- }
- ]
- # Preparation for inference
- text = processor.apply_chat_template(
- messages, tokenize=False, add_generation_prompt=True
- )
- image_inputs, video_inputs = process_vision_info(messages)
- inputs = processor(
- text=[text],
- images=image_inputs,
- videos=video_inputs,
- padding=True,
- return_tensors="pt",
- )
- inputs = inputs.to("cuda")
- # Inference: Generation of the output
- generated_ids = model.generate(**inputs, max_new_tokens=128)
- generated_ids_trimmed = [
- out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
- ]
- output_text = processor.batch_decode(
- generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
- )
- print(output_text)
|