|
@@ -0,0 +1,62 @@
|
|
|
+from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
|
|
+from qwen_vl_utils import process_vision_info
|
|
|
+
|
|
|
+
|
|
|
+model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
+ "../models/Qwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto"
|
|
|
+)
|
|
|
+
|
|
|
+# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
|
|
+# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
+# "Qwen/Qwen2.5-VL-3B-Instruct",
|
|
|
+# torch_dtype=torch.bfloat16,
|
|
|
+# attn_implementation="flash_attention_2",
|
|
|
+# device_map="auto",
|
|
|
+# )
|
|
|
+
|
|
|
+# default processer
|
|
|
+processor = AutoProcessor.from_pretrained("../models/Qwen2.5-VL-3B-Instruct")
|
|
|
+
|
|
|
+# The default range for the number of visual tokens per image in the model is 4-16384.
|
|
|
+# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
|
|
|
+# min_pixels = 256*28*28
|
|
|
+# max_pixels = 1280*28*28
|
|
|
+# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ messages = [
|
|
|
+ {
|
|
|
+ "role": "user",
|
|
|
+ "content": [
|
|
|
+ {
|
|
|
+ "type": "image",
|
|
|
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
|
|
+ },
|
|
|
+ {"type": "text", "text": "Describe this image."},
|
|
|
+ ],
|
|
|
+ }
|
|
|
+ ]
|
|
|
+
|
|
|
+ # Preparation for inference
|
|
|
+ text = processor.apply_chat_template(
|
|
|
+ messages, tokenize=False, add_generation_prompt=True
|
|
|
+ )
|
|
|
+ image_inputs, video_inputs = process_vision_info(messages)
|
|
|
+ inputs = processor(
|
|
|
+ text=[text],
|
|
|
+ images=image_inputs,
|
|
|
+ videos=video_inputs,
|
|
|
+ padding=True,
|
|
|
+ return_tensors="pt",
|
|
|
+ )
|
|
|
+ inputs = inputs.to("cuda")
|
|
|
+
|
|
|
+ # Inference: Generation of the output
|
|
|
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
|
|
|
+ generated_ids_trimmed = [
|
|
|
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
+ ]
|
|
|
+ output_text = processor.batch_decode(
|
|
|
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
|
+ )
|
|
|
+ print(output_text)
|